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Abstract—In this paper, we propose an on-line technique
for in-network, distributed and composite event detection and
identification for streaming sensor data in resource constrained
Wireless Sensor Networks (WSNs). We use General Hebbian
Algorithm (GHA) to find out principal components of a multi-
attribute input data which has a linear complexity as opposed
to quadratic complexity with eigen value decomposition (EVD).
This allows for on-line computation of percentage contributions
of individual attributes towards detected event. Comparison with
other event detection techniques shows that our scheme incurs low
communication overhead as compared to some state-of-the-art
schemes. Moreover, our hyper-ellipsoidal clustering based event
detection algorithm is shown to achieve high detection rates (DRs)
of over 98.88% and very low false positive rates (FPRs) of below
0.01%. Our simulation results and the hardware implementation
also show that the accuracy of proposed identification scheme is
in strong agreement with EVD based techniques, proving it to be
a successful event identification method for WSNs.
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I. INTRODUCTION

A wireless sensor network (WSN) consists of many energy
and memory constrained sensor nodes typically equipped with
sensors for monitoring multiple attributes of the surround-
ing environment e.g. temperature, humidity, acceleration, etc.
These nodes are capable of wirelessly communicating im-
portant information to the base-station or sink. Each sensor
reading can be characterized as either normal or an outlier
if it significantly deviates from the normal pattern. Events
however are genuine abnormalities in one or multiple attributes
of interest due to an exceptional or unexpected change in
environmental conditions or a hazardous condition for example
a fire or gas leakage [1][2]. Outlier detection schemes are
used in a distributed or centralized manner in order to detect
anomalies in sensor data across WSNs.

An event detection scheme is essentially derived from an
outlier detection scheme. We define an event as a sequence
of outliers with spatial as well as temporal correlation in a
streaming data set [3][4]. Events can be characterized as simple
(atomic), composite, local or global [5], [2]. A simple event
can be declared based on the observation of one attribute. How-
ever a composite event is the combination of different atomic
events [2]. Similarly, local events are detected in the vicinity

of a single node only whereas a global event is declared
only after reception of multiple local event reports. Although
event detection schemes have received some treatment in the
literature [4][3][2], event identification schemes capable of
determining the relative contribution of each of the attribute in
a declared event) have rarely been investigated.

In this paper, we present a joint event detection and identifi-
cation (EDI) scheme. The proposed scheme is on-line, accurate
and can be used easily on resource constrained nodes of real
world WSNs. Our basic outlier detection algorithm is based
on hyper-ellipsoid clustering [6] which precedes the event
detection and identification phase. Our event identification
algorithm is based on dimensionality reduction using General
Hebbian Algorithm (GHA) which allows for on-line computa-
tion of percentage contributions of individual attributes towards
detected event as compared to Eigen Value Decomposition
(EVD) which needs large batches of measurements for accu-
rate calculation of principal components. We further provide
a simple mechanism that allows detection of composite and
global events in the network while keeping communication
overhead very low. Our event detection and identification
techniques have been simulated on real dataset. Our detection
scheme is shown to achieve very high detection rate (DRs) and
low false positive rate (FPR). Our on-line event identification
algorithm achieves accuracy as high as that of standard off-line
EVD based dimensionality reduction technique. The promising
results of the hardware implementation of our on-line detection
and identification scheme on Texas Instruments CC430 based
WizziMotes [7], highlight the effectiveness and high accuracy
of our proposed scheme.

In the rest of the paper we start with some related work
on event detection and event identification schemes and back-
ground of the Hebbian algorithm in Section II. Section III
introduces the system model and event detection and iden-
tification algorithms based on our system model. Simulation
results and hardware implementation of the proposed scheme
have been presented and discussed in Sections IV and V
respectively. Section VI concludes the paper.

II. RELATED WORK

A. Outlier Detection
Several surveys on characterization and classification of

outlier detection techniques [1] have suggested that clustering
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based outlier detection techniques have got numerous advan-
tages such as low computational complexity, ability to be
deployed in an unsupervised and dynamic environments, high
detection and low false positive rates and the ability to incor-
porate multi-variate and trendy data. Hyper-ellipsoid clustering
is one of the popular outlier detection in WSNs [6][8][9]. It
has the potential to perform equivalent to the state-of-the-art
Support Vector Machine (QS-SVM) based methods [10][11]
in terms of detection rates (DR) and false positive rates (FPR)
[12]. These clustering techniques are computationally simpler,
introduce very low latencies and can incorporate correlation
between the attributes [12]. Our implementation of outlier
detection is based on the iterative boundary estimation model
mentioned in [6] called Forgetting Factor Iterative Data Cap-
ture Anomaly Detection (FFIDCAD). The algorithm computes
the boundary of the local model for multidimensional data in
an on-line manner. Each node performs real time adjustment to
its hyper-ellipsoidal cluster boundary based on the most recent
measurements. Moreover by using a forgetting factor, it allows
to effectively track any non-stationary environmental behavior.

B. Event Detection and Identification (EDI)

An event is a sequence of outliers with spatial and temporal
correlation in a streaming data set [3][4]. Event identification
is about determining the relative contribution of each of the
attribute in a declared event. Event detection and identification
go hand-in-hand and the identification phase is invoked right
after the detection of a local event. A computationally efficient,
accurate and distributed identification technique leads to an
efficient utilization of the limited energy resources of the
network by decreasing the overall communication overhead.

Identification techniques based on dimensionality reduction
through Eigen Value Decomposition (EVD) can effectively
perform event identification, but EVD involves a huge compu-
tation time and large storage space [13] which makes it infea-
sible for a distributed implementation on energy constrained
nodes. Moreover, its hardware implementation also entails
complicated circuitry [13] in FPGA based implementations.
We propose to use General Hebbian Algorithm (GHA) for
event identification in WSNs. GHA was initially proposed by
Erkki Oja in 1982 [14] for the modeling of neural networks.
GHA algorithm offers an effective online way to compute the
eigen vectors and their corresponding eigen values. GHA has
previously been used in various diverse fields but to the best of
authors’ knowledge, GHA based event identification has never
been studied, simulated or implemented in WSNs.

III. SYSTEM MODEL AND THE PROPOSED
IMPLEMENTATION

A. Outlier Detection

Consider a WSN where each node is capable of measuring n
attributes and the data gets hierarchically routed to the gateway
node Sg . Let Ak = {a1,a2, · · · ,ak}T be an n×k data vector
where k is the total number of data samples in the memory and
n is the number of attributes. The n×1 mean mk of streaming

data can be updated in an on-line manner in the following way

ma,k+1 =
kma,k + ak+1

k + 1
(1)

The continuously updated covariance matrix Sk is given as

ma2,k+1 =
kma2,k + ak+1a

T
k+1

k + 1
(2)

Sk = ma2,k − (ma,k m
T
a,k) (3)

Once the covariance of the data is calculated, a hyper-
ellipsoid is found whose boundary encapsulates 98% of the
data under the assumption that the data has a normal dis-
tribution [15]. The boundary of such an hyper-ellipsoid is
given by the inverse of the chi-squared statistic with d-degrees
of freedom, i.e. t2 = (χ2

d)
−1
p with p = 0.98. Thereafter,

Mahalonobis distance of each data sample is computed and the
data points lying outside the boundary of the hyper ellipsoid
are declared as outliers. An outlier is declared if:

(a−mk)TS−1k (a−mk) > t2 (4)

The mean ma,k+1 can also be incrementally calculated
using Eq. (5). This exponential moving average technique
uses λ as a forgetting factor which adds tracking capability
in the algorithm making it feasible for implementation in
unsupervised dynamic environments [16]. The suggested value
of λ is between 0.99 to 0.999 [16]. The covariance inverse S−1k
can then incrementally be updated by using Eq. (6).

mk+1,λ = λmk,λ + (1− λ)xk+1 (5)

S−1k+1 =
kS−1k

λ(k − 1)
× (6)[

I −
(xk+1 −mkλ)(xk+1 −mkλ)TS−1k

(k−1)
λ + (xk+1 −mkλ)TS−1k (xk+1 −mkλ)

]

B. Local Composite Event Detection and Identification (EDI)
In our implementation, a local event is declared at a node

if more than q consecutive outliers are detected to ensure
temporal correlation of outliers before declaring an event. The
value of q depends on sampling rate and and the required
temporal resolution. For a sampling rate of 10 samples per
second, we use q = 20 in our simulations and implementation.
Event identification is invoked only after a local event has been
declared at a node. Our algorithm carries out identification in
an on-line manner by computing the eigen vectors and the
corresponding eigen values of the covariance matrix of the
outliers in the detected event. The eigen value decomposition
of the incrementally updated covariance matrix So can be
written as follows:

So = ΦTΛΦ (7)

where Φ is a n× n matrix containing eigen vectors and Λ
is a n× n diagonal matrix with corresponding eigen values.
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If So is symmetric, positive and has an invertible square
root, then the data can be whitened by finding the appropriate
weights (projections of the data set onto the eigen vectors) Ew
corresponding to the eigen values:

X = A−m (8)

Ew = Λ−1/2ΦTX = S−1/2o X = Λ−1/2y (9)

where A is incoming data vector, X is zero mean data
vector, and y = ΦTX gives the de-correlated data. We will
shortly see that we do not need to calculate So because our
GHA based algorithm will automatically provide us with the
required eigen values and vectors.

1) Generalized Hebbian Algorithm: For a linear MIMO
system with inputs x1(t), x2(2), ..., xn(t) of weights
w1(t), w2(t), ..., wn(t) we have:

y =

n∑
i=1

wixi (10)

In case of streaming data, the right hand side of above equation
leads to an infinite increment with time. Therefore, the weights
wi are normalized as follows at each iteration:

wi(t+ 1) =
wi(t) + η(t)xi(t)[
n∑
i=1

[wi(t) + ηy(t)]

]1/2 (11)

where η is a small constant which determines the convergence
time. For a general case equation (11) simplifies [14] to

wi(t+ 1) = wi(t) + ηy(t)[xi(t)− y(t)wi(t)] +O(η2) (12)

Equation (12) updates the weights at every iteration with a neg-
ative feedback such that an increase in the output y decreases
the weights. The algorithm converges mainly because of the
fact

∑n
i=1 wi(t)

2 is close to one. For a detailed mathematical
analysis of the convergence of the weights to the principal
components, the reader is refereed to the classic papers by
Oja and Karhunen [14].

2) Using GHA for Event Identification: The eigen vector
matrix Φ in eq. (9) is calculated using GHA algorithm as
follows: Let W(t) = {w1(t),w2(t), · · · ,wn(t)} be a n× n
weight matrix, initialized to some random W and η be the
learning rate. Algorithm 1 summarizes the steps for calculating
and updating the eigen vector matrix Φ in an on-line manner
as jth consecutive outlier is detected in an event.

In steps 4-12, weight matrix W is iteratively updated where
Diag(M) is an operator that diagonalizes matrix M . The
algorithm stops when imax iterations have been performed.
If imax, i.e. total number of iterations, is large enough and
the learning rate is appropriate, W converges to eigen vector
matrix Φ in eq. (9). We’ve used η = 0.05 and imax = 100
in our simulations and implementation on WizziMotes. After
getting the eigen vector matrix Φ, the eigen values of the
covariance matrix can be obtained simply as:

Λ = Diag(ΦSΦT ) (13)

Among the q consecutive detected outliers lying outside
boundary of the hyper-ellipsoid (t2 = (χ2

d)
−1
p with p = 0.98),

Algorithm 1 General Hebbian Algorithm (For Eigen Vectors)
1: initialize random W ; /*Weight Matrix*/
2: initialize η; /*Small Value of Learning Rate*/
3: initialize imax;
4: for each consecutive detected outlier Xj do
5: Xj = Aj −mk;
6: for i = 1 to imax do
7: Y =W ∗Xj

8: dW = [Y ∗XT
j ]−Diag(Y ∗ Y T ) ∗W

9: W =W + η ∗ dW
10: end for
11: end for
12: Return W

the latest qth outlier is decorrelated by projecting onto the cal-
culated eigen vectors (ΦTX) and then whitened (Λ−1/2ΦTX)
to get an n× 1 weight matrix Ew containing the identification
ratios of the individual attributes. The percentage contribution
or identification ratio of ith attribute Ci towards the detected
event can then simply be calculated as

Ci =
Ew[i]
n∑
i=1

Ew[i]
× 100 (14)

Based on this contribution information, now each node can
decide whether the detected event is composite or atomic.
Owning to a distributed implementation, no sensor data is
being saved on the sensor nodes; such an implementation is
quite difficult (if not impossible) with batch implementations
of EVD. Moreover, with GHA the complexity with respect
to the dimension of data vectors (i.e. the number of sensors
on a sensor node) increases in a linear order as opposed to
quadratic increase with eigenvalue decomposition. Therefore,
principal components can be computed with lower computa-
tional resources as compared to GHA, which makes it more
attractive for hardware implementation.

C. Event Reporting Packet (ERP) format

During the event detection and identification phase, the
following packet format facilitates in transferring composite
and global event reports to cluster heads. It is assumed that a
node transmits its event report once a local event is detected its
vicinity (an event triggered implementation). The term cluster
heads or CHs is used for representing parent nodes i.e. the
nodes responsible for collecting data from children. Following
is a description of the individual fields in the proposed packet
format.
• EVENT FLAG: A 1 bit field indicating the presence or

absence of an event.
• NODE ID: A variable length node identification number.

The number of bits in this field is of the order of
log2(Nn), where Nn is the number of nodes in the
network (typically ranges between 8-11 bits for a small
scale network).

• ATTRIBUTES: This field contains the attributes con-
tributing in a declared event and thus indicates the
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presence of multi-attribute events. For instance, in case
of a mine explosion, both gas and temperature will
contribute toward the event. Moreover, multi-attribute
events are not always perfectly correlated in time. To
tackle “cause and effect” in multi-attribute events, each
node waits for τL seconds before declaring a multi-
attribute events. The parameter τL is environment and
sensor dependent (and thus is user specified). This field
requires n bits where n is the maximum number of
attributes being monitored by any node in the network.

• SPATIAL CONFIDENCE LEVEL: This field of the
packet is only updated by the parent nodes or CHs in
case of multiple ERP receptions from children nodes
(section III-D). The number of bits in this field is equal
to bits in NODE ID field.

• IDENTIFICATION RATIOS: This field includes the
Identification Percentages (IPs) of the detected event de-
rived from the EDI algorithm in form of whole numbers
from 0-100. Thus, if n attributes are being monitored,
this part of the packet will accumulate to 7n bits.

• EVENT TAG: This field is used to differentiate between
multiple event reports from multiple CHs. If number of
cluster heads in the network is Nc, log2(Nc) bits are
required for this field.

So, the total number of bits in ERP’s of leaf nodes will be
8n + log2(Nn) + 1 and for parent heads the packet size will
be 8n+ log2(Nc) + 2× log2(Nn) + 1.

D. Global Composite Event Detection and Identification
Global event detection is invoked only if a local event has

been detected. If a CH receives an ERP packet indicating an
event, it performs the following steps before forwarding the
ERP up the hierarchy:

1) The moment a CH receives an event packet from one of
its child nodes, it starts a timer and waits for an interval
τG to hear from other child nodes for an event report.
The parent then estimates τG by exploiting the known
positions of its children nodes. This step is performed
for all child nodes (nc times).

2) The CH then extracts the event information from the
ERPs and looks for spatial and temporal correlation of
the detected events.

3) It also compares the extracted information with its own
event information to identify the attributes contributing
towards a “global” event.

4) Each parent node increments the spatial confidence
level field if multiple children report similar events, and
averages out the individual identification ratios of the
attributes reported by each node

5) After performing the above mentioned steps from 1-4,
the CH then packetizes the aggregated information into
an ERP (according to format discussed in Section III-C)
and sends it up the hierarchy towards its parent node.

For a network of total 1024 nodes, 992 leaf nodes and 32
cluster heads (assuming each node measuring 5 attributes),
each leaf and CH node needs just 51 and 66 bits respectively
to communicate the event information up the hierarchy.

IV. COMPLEXITY COMPARISON

Tables I and II show comparison of the complexity and
communication overhead of our proposed EDI technique with
5 QS-SVM based algorithms presented in [10], [11] and [17]
respectively. All of these algorithms also consider both spatio-
temporal and attribute correlations of data for global event
detection. The notation for entries in Table I is as follows: n is
the total number of measurements, d is number of attributes,
v << 1 is fraction of events in data and u∈ (0, 1) is the
regularization parameter for SVM which sets the lower limit
to the number of false detections in any QS-SVM algorithm.
Moreover, nv << n and (nv)3 << n3. In Table II, No is
be the number of outliers and Ne be the number of events
detected in the network. In our scheme, very concise event
related information propagates through the network thus giving
the communication complexity of order O(Ne) instead of
O(n) that is the case with above mentioned SVM schemes
where each measurement needs to be communicated to the
base-station for processing. Note that n >> Ne in real world
scenarios. Moreover, WSN sensor data is floating point data
and sending all the data vectors to the base-station for event
detection and identification leads to a huge overhead.

V. SIMULATION RESULTS AND DISCUSSION

The simulation for complete EDI process has been divided
into detection and identification phases. Fig. 1 presents the
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Proposed EDI approach Computational Complexity
Outlier Detection O(nd2)
Projection along d dimensions O(nv)
Clustering along d dimensions O(nv)
Decision for outlier and event O(1)

Total computational complexity of
proposed technique

O(nd2 + 2vn+ imax ∗ nv) ≈
O(nd2)

QS-SVM Techniques Computational Complexity
ST-QS-SVM [17] O(n2)
STA-QS-SVM [10] O(n2 + nd2)
STA-TASV,STA-TSV [11] O(n2 + nd2)
STA-CA [11] O(n2 + nud2)

TABLE I. COMPARISON OF COMPUTATION COMPLEXITY WITH
QS-SVM BASED ALGORITHMS

Proposed EDI approach Communication Complexity
Maximum communication overhead for
parent node close to base-station O(Ne)

QS-SVM Techniques Communication Complexity
ST-QS-SVM [17] O(n)
STA-QS-SVM [10] O(n)
STA-TASV,STA-TSV,STA-CA [11] O(n)

TABLE II. COMPARISON OF COMMUNICATION OVERHEAD WITH
QS-SVM BASED ALGORITHMS

block diagram representation of the simulated algorithm. At
first, when a data sample is collected, an on-line outlier
detection algorithm determines if the current measurement
points to a normal reading or an outlier. In case an outlier is
detected, the algorithm goes into local event detection phase
and looks for a series of outliers. If an event is declared (i.e.
more than q consecutive outliers are detected), the algorithm
enters the event identification phase described in Section III-B.

Simulations have been performed on real world dataset
which was taken from a multi-hop WSN deployment [18]
using TelosB motes, consisting of humidity and temperature
measurements over a 6 hour period at 5 second intervals.
The proposed event detection and identification algorithm was
applied on Nodes 1 and 3 of TelosB dataset because both
clearly contained an event. Principal components were com-
puted with both EVD and with GHA algorithm. Two correlated
attributes namely temperature and humidity have been tested.
The event detection algorithm successfully declared the event
and passed the data to the event identification phase. Figure
2 shows time series plot for both nodes 1 and 3 respectively
along with the detected outliers. It is obvious that the pro-
posed technique successfully detects both outliers and events.
Figure 3 shows the results of event identification obtained. We
compare the results of our GHA based identification technique
with the regular EVD based approach used in [19]. The results
shown by figure 3 conclude that the percentage contributions
of measured using our proposed identification approach are
more than 95% accurate when compared to state-of-the-art
EVD based techniques [19], proving it to be a successful
event identification method for WSNs. The comparison of the
detection and false positive rates of our scheme with some
state-of-the-art SVM based schemes is given in Table III.

VI. HARDWARE IMPLEMENTATION

It can be observed from the simulation results that the
proposed event identification scheme successfully determines
the ratio for different attributes with significantly less com-
putational resources. The general Hebbian algorithm can be

Fig. 2. Results of outlier and event detection for TelosB Nodes 1 and 3

Fig. 3. Results of event identification for TelosB Nodes 1 and Node 3
alongwith a comparison with regular PCA based approach mentioned in [19]

10 times more computationally efficient when compared with
conventional EVD algorithms [20]. Previous evaluations based
on hardware implementations [20] have shown that upto 99.8%
improvement in memory requirements, 20.5 times improve-
ment in power consumption and 10.3 times improvement in
logic resources can be achieved by the stream-based hebbian
eigen filter as compared to EVD. This low complexity and
computational efficiency of the presented event identification
scheme makes it attractive for implementation in resource
constrained WSNs. We use CC430 based WizziMotes [7]
running DASH7 protocol [21] in order to test our proposed
event identification technique. We selected two attributes
namely illumination and temperature. The readings from the
illumination sensor were normalized to give values close to 1
when the mote was placed in complete darkness. In the same
way the readings from temperature sensor were normalized
to give temperature of the atmosphere in Co. We performed
two experiments in order to test our algorithm. In both the
experiments, two sensor nodes were used, one being the sink
node connected with a PC working as a Cluster Head (CH) of
the second child node.

The validation of EDI algorithm is explained as follows;
each node updates the covariance and mean of the monitored
attributes in an on-line manner to continuously check the
readings for anomalous behavior on the basis of Mahalanobis
distance. Once a local event is declared by the child node,
on-line GHA based event identification is invoked which
calculates the individual contribution of the attributes in the
detected local event and sends the required information to the
sink node using the packet format mentioned in Section III-C.
The sink node decodes the event report packet, compares it
with it’s own event information and the results of composite



6

Technique Detection
Rate

False Positive
Rate

Proposed EDI approach [17] 98.88% 0.01%
ST-QS-SVM [17] 16.67% 10.85%
STA-QS-SVM [10] 91.67% 0.5%
STA-TASV [11] 92.45% 0.48%
STA-TSV[11] 99% 0.9%
STA-CA [11] 91.67% 0.1%

TABLE III. COMPARISON OF DETECTION AND FALSE POSITIVE
RATES WITH QS-SVM BASED ALGORITHMS

event detection are monitored on the PC through a UART
interface on the sink node. Following are the two scenarios
in which we tested our algorithm. The results obtained in both
experiments are also discussed.

1) Testing Scenario No. 1: In scenario 1, the identification
algorithm is tested by turning off the lights of the room
in which the motes were deployed. The idea was to find
out if the algorithm identified close to 100% contribution
of the sole attribute responsible for the event. The results
showed 1.286% and 98.814% contribution for temperature and
illumination respectively confirming the effectiveness of the
proposed scheme.

2) Testing Scenario No. 2: In order to find out the effi-
ciency of the algorithm in scenarios where multiple correlated
attributes contribute toward an event, we illuminated two
incandescent bulbs in a close vicinity of both the motes. The
results showed 74.87% contribution from illumination and
25.13% contribution from temperature attributes respectively
which proved that both light intensity and temperature have
contributed to the event in a correlated manner.

The above results show that the proposed scheme gives
accurate identification ratios in cases where both independent
as well as correlated attributes contribute towards an event.
In future, we will be implementing our complete composite
and global event detection and identification solution in a
larger WSN framework consisting of our COTS sensor nodes
for performing more thorough evaluations of our proposed
schemes in terms of required memory resources and the overall
network lifetime.

VII. CONCLUSION

This paper proposes a low complexity and computationally
efficient event identification scheme for wireless sensor net-
works. We show, for the very first time, that event identification
can be performed by using a low complexity implementation
of dimensionality reduction technique. The proposed approach
makes use of Generalized Hebbian Algorithm (GHA) to deter-
mine the relative contribution of each attribute in an event with-
out compromising the accuracy of the results. The proposed
identification algorithm has also been implemented and tested
on off-the-shelf WizziMotes [7] proving the effectiveness of
the proposed scheme by giving extremely accurate results in
terms of the identification ratio of the individual attributes.
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