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Recognizing Keystrokes Using WiFi Devices
Kamran Ali Alex X. Liu Wei Wang Muhammad Shahzad

Abstract—Keystroke privacy is critical for ensuring the secu-
rity of computer systems and the privacy of human users as what
being typed could be passwords or privacy sensitive information.
In this paper, we show for the first time that WiFi signals can
also be exploited to recognize keystrokes. The intuition is that
while typing a certain key, the hands and fingers of a user move
in a unique formation and direction and thus generate a unique
pattern in the time-series of Channel State Information (CSI)
values, which we call CSI-waveform for that key. In this paper, we
propose a WiFi signal based keystroke recognition system called
WiKey. WiKey consists of two Commercial Off-The-Shelf (COTS)
WiFi devices, a sender (such as a router) and a receiver (such as
a laptop). The sender continuously emits signals and the receiver
continuously receives signals. When a human subject types on a
keyboard, WiKey recognizes the typed keys based on how the
CSI values at the WiFi signal receiver end. We implemented
the WiKey system using a TP-Link TL-WR1043ND WiFi router
and a Lenovo X200 laptop. WiKey achieves more than 97.5%
detection rate for detecting the keystroke and 96.4% recognition
accuracy for classifying single keys. In real-world experiments,
WiKey can recognize keystrokes in a continuously typed sentence
with an accuracy of 93.5%. WiKey can also recognize complete
words inside a sentence with more than 85% accuracy.

Index Terms—Keystroke Recognition; Wireless Sensing; Hu-
man Computer Interaction (HCI); Wireless Security.

I. INTRODUCTION

Keystroke privacy is critical for ensuring the security of
computer systems and the privacy of human users as what be-
ing types could be passwords or privacy sensitive information.
The research community has studied various ways to recognize
keystrokes in context of computer systems and the privacy of
human users, which can be classified into three categories:
acoustic emission based approaches, electromagnetic emission
based approaches, and vision basead approaches. Acoustic
emission based approaches recognize keystrokes based on
either the observation that different keys in a keyboard produce
different typing sounds [2], [3] or the observation that the
acoustic emanations from different keys arrive at different
microphones at different time [4]. Electromagnetic emission
based approaches recognize keystrokes based on the observa-
tion that the electromagnetic emanations from the electrical
circuit underneath different keys in a keyboard are different
[5]. Vision based approaches recognize keystrokes using com-
puter vision technologies [6].

In this paper, we show for the first time that commodity
WiFi devices can also be used to recognize keystrokes. The
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Fig. 1: WiKey System

key intuition is that while typing a certain key, the hands and
fingers of a user move in a unique direction and formation,
generating a unique pattern in the time-series of Channel State
Information (CSI) values, which we call CSI-waveform of that
key. The keystrokes of each key introduce relative unique
multi-path distortions in WiFi signals and this uniqueness can
be exploited to recognize keystrokes. Due to the high data rates
supported by modern WiFi devices, WiFi cards provide enough
CSI values within the duration of a keystroke to construct a
high resolution CSI-waveform for each keystroke.

In this paper, we propose a WiFi signal based keystroke
recognition system called WiKey. WiKey consists of two
Commercial Off-The-Shelf (COTS) WiFi devices, a sender
(such as a router) and a receiver (such as a laptop), as
shown in Figure 1. The sender continuously emits signals
and the receiver continuously receives signals. When a human
subject types in a keyboard, on the WiFi signal receiver end,
WiKey recognizes the typed keys based on how the CSI
value changes. CSI values quantify the aggregate effect of
wireless phenomena such as fading, multi-paths, and Doppler
shift on the wireless signals in a given environment. When
the environment changes, such as a key is being pressed, the
impact of these wireless phenomena on the wireless signals
change, resulting in unique changes in the CSI values.

There are three key technical challenges. The first technical
challenge is to segment the CSI time series to identify the start
time and end time of each keystroke. We studied the charac-
teristics of typical CSI-waveforms of different keystrokes and
observed that the waveforms of different keys show a similar
rising and falling trends in the changing rate of CSI values.
Based on this observation, we design a keystroke extraction
algorithm that utilizes CSI streams of all transmit-receive
antenna (TX-RX) pair pairs to determine the approximate
start and end points of individual keystrokes in a given CSI-
waveform by continuously matching the trends in CSI time
series with the experimentally observed trends using a sliding
window approach.

The second technical challenge is to extract distinguishing
features for generating classification models for each of the
37 keys (10 digits, 26 alphabets and 1 space-bar). As the keys
on a keyboard are closely placed, conventional features such
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as maximum peak power, mean amplitude, root mean square
deviation of signal amplitude, second/third central moment,
rate of change, signal energy or entropy, and number of
zero crossings cannot be used because the values of these
features for adjacent keys are almost identical. To address
this challenge, we use the CSI-waveform shapes of each key
from each TX-RX antenna pair as features. As the waveforms
for each key contain a large number of samples, we apply
the Discrete Wavelet Transform (DWT) technique on these
waveforms to reduce the number of samples while keeping
the shape preserving time and frequency domain information
intact. We use the waveforms resulting from the DWT of
individual keystrokes as their shape features.

The third challenge is to compare shape features of any
two keystrokes. The midpoints of extracted CSI-wavforms
of different keystrokes rarely align with each other because
the start and end points determined by extraction algorithm
are never exact. Moreover, the lengths of different keystroke
waveforms also differ because the duration of pressing any
key is often different. Consequently, the midpoints and lengths
of shape features do not match either. Another issue is that
the shape of different keystroke waveforms of the same key
are often distorted versions of each other because of slightly
different formation and direction of motion of hands and
fingers while pressing that key. Thus, two shape features
cannot be compared using standard measures like correlation
coefficient or Euclidean distance. To address this challenge, we
use the Dynamic Time Warping (DTW) technique to quantify
the distance between the two shape features. DTW can find
the minimum distance alignment between two waveforms of
different lengths.

The key novelty of this paper is on proposing the first WiFi
signal based keystroke recognition approach. Some recent
work uses CSI values to recognize various macro aspects
of human movements such as falling down [7], household
activities [8], detection of human presence [9], and estimating
the number of people in a crowd [10]. These schemes extract
coarse grained information from the CSI values to recognize
the macro-movements such as falling down or recognizing
fullbody/limb gestures. They cannot be directly adapted to
recognize keystrokes because such coarse grained information
does not capture the minor variations in the CSI values caused
by human micro-movements such as those of hands and fingers
while typing. Some recent work, namely WiHear, uses CSI
values to extract the micro-movements of mouth to recognize
9 syllables in the spoken words [11]. However, WiHear uses
special hardware including directional antennas and stepper
motors to direct WiFi beams towards speaker’s mouth and
extract the micro-movements.

We implemented the WiKey system using a TP-Link TL-
WR1043ND WiFi router and a Lenovo X200 laptop. In the
evaluation process, we first build a keystroke database of 10
human subjects with IRB approval. WiKey achieves more than
97.5% detection rate for detecting the keystroke and 96.4%
recognition accuracy for classifying single keys. In real-world
experiments, WiKey can recognize individual keystrokes in
a continuously typed sentence with an accuracy of 93.5%.
Moreover, WiKey can recognize complete words in a sentence

with more than 85% accuracy. In this paper, we have shown
that fine grained activity recognition is possible by using
COTS WiFi devices. Thus, the techniques proposed in this
paper can be used for several HCI applications. Examples
include zoom-in, zoom-out, scrolling, sliding, and rotating
gestures for operating personal computers, gesture recognition
for gaming consoles, in-home gesture recognition for operating
various household devices, and applications such as writing
and drawing in the air. Other than recognizing keystrokes
on conventional keyboards, our WiKey technology can be
potentially used to build virtual keyboards where human users
type on a printed keyboard.

II. RELATED WORK

A. Device Free Activity Recognition

Device-free activity recognition solutions use the variations
in wireless channel to recognize human activities in a given
environment. Existing solutions related to our work can be
grouped into three categories: (1) RSS based, (2) CSI based
and (3) Software Defined Radio (SDR) based.

RSS Based: Sigg et al. proposed activity recognition
schemes that utilize RSS values of WiFi signals to recognize
four activities including crawling, lying down, standing up,
and walking [12], [13]. They achieved activity recognition
rates of over 80% for these four activities. To obtain the
RSS values from WiFi signals, they used USRPs, which are
specialized hardware devices compared to the COTS WiFi
devices that we used in our work. While RSS values can be
used for recognizing macro-movements, they are not suitable
to recognize the micro-movements such as those of fingers
and hands in keyboard typing because RSS values only provide
coarse-grained information about the channel variations and do
not contain fine-grained information about small scale fading
and multi-path effects caused by these micro-movements.

CSI Based: CSI values obtained from COTS WiFI network
interface cards (NICs) (such as Intel 5300 and Atheros 9390)
have been recently proposed for activity recognition [7]–[11],
[14] and localization [15]–[17]. Han et al. proposed WiFall
that detects fall of a human subject in an indoor environment
using CSI values [7]. Zhou et al. proposed a passive human
detection scheme which exploits multi-path variations for
detecting human presence in an indoor environment using CSI
values [9]. Zou et al. proposed Electronic Frog Eye that counts
the number of people in a crowd using CSI values by treating
the people reflecting the WiFi signals as “virtual antennas”
[10]. Wang et al. proposed E-eyes that exploits CSI values for
recognizing household activities such as washing dishes and
taking a shower [8]. Nandakumar et al. leverage the CSI and
RSS information from off-the-shelf WiFi devices to classify
four arm gestures - push, pull, lever, and punch [14]. The
fundamental difference between these schemes and our scheme
is that these schemes extract coarse grained features from the
CSI values provided by the COTS WiFi NIC to perform these
tasks while our proposed scheme refines these CSI to capture
fine grained variations in the wireless channel for recognizing
keystrokes. Wang et al. propose WiHear that uses CSI values
recognizes the shape of mouth while speaking to detect
whether a person is uttering one of a set of nine predefined
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nine syllables [11]. While WiHear can capture the micro-
movements of lips, it uses special purpose directional antennas
with stepper motors for directing the antenna beams towards
a person’s mouth to obtain a clean signal for recognizing
mouth movements. In contrast, our proposed scheme does not
use any special purpose equipment and recognizes the micro-
movements of fingers and hands using COTS WiFi NIC.

SDR Based: Researchers have proposed schemes that uti-
lize SRDs and special purpose hardware to transmit and re-
ceive custom modulated signals for activity recognition [18]–
[21]. Pu et al. proposed WiSee that uses a special purpose
receiver design on USRPs to extract small Doppler shifts from
OFDM WiFi transmissions to recognize human gestures [18].
Kellogg et al. proposed to use a special purpose analog envelop
detector circuit for recognizing gestures within a distance of up
to 2.5 feet using backscatter signals from RFID or TV trans-
missions [19] . Lyonnet et al. use micro Doppler signatures
to classify gaits of human subjects into multiple categories
using specialized Doppler radars [20]. Adib et al. proposed
WiTrack that uses a specially designed frequency modulated
carrier wave radio frontend to track human movements behind
a wall [21]. Recently, Chen et al. proposed an SDR based
custom receiver design which can be used to track keystrokes
using wireless signals [22]. Compared to these schemes, our
scheme does not use any specialized hardware or SDRs rather
utilizes COTS WiFi NICs to recognize keystrokes.
B. Keystrokes Recognition

To the best of our knowledge, there is no prior work on
recognizing keystrokes by leveraging variations in wireless
signals using commodity WiFi devices. Other than the SDRs
based keystroke tracking approach proposed in [22] which uses
wireless signals to track keystrokes, researchers have proposed
several keystrokes recognition schemes that are based on other
sensing modalities such as acoustics [2]–[4], [23], electromag-
netic emissions [5], and video cameras [6]. Next, we give a
brief overview of the other existing schemes that utilize these
sensing modalities to recognize keystrokes.

Acoustics Based: Asonov et al. proposed a scheme to rec-
ognize keystrokes by leveraging the observation that different
keys of a given keyboard produce slightly different sounds
during regular typing [2]. They used back-propagation neural
network for keystroke recognition and fast fourier transform
(FFT) of the time window of every keystroke peak as features
for training the classifiers. Zhuang et al. proposed another
scheme that recognizes keystrokes based on the sounds gener-
ated during key presses [3]. They used cepstrum features [23]
instead of FFT as keystroke features and used unsupervised
learning with language model correction on the collected
features before using them for supervised training and recog-
nition of different keystrokes. Zhu et al. proposed a context-
free geometry-based approach for recognizing keystrokes that
leverage the acoustic emanations from keystrokes to first
calculate the time difference of keystroke arrival and then
estimate the physical locations of the keystrokes to identify
which keys are pressed [4].

Electromagnetic Emissions Based Vuagnoux et al. used a
USRP to capture the electromagnetic emanations while press-
ing the keys [5]. These electromagnetic emanations originated

from the electrical circuit underneath each key in conventional
keyboards. The authors proposed to capture the entire raw
electromagnetic spectrum and process it to recognize the
keystrokes. Unfortunately, this scheme is highly susceptible
to background electromagnetic noise that exists in almost all
environments these days such as due to microwave ovens,
refrigerators, and televisions.

Video Camera Based: Balzarotti et al. proposed ClearShot
that processes the video of a person typing to reconstruct
the sentences (s)he types [6]. The authors propose to use
context and language sensitive analysis for reconstructing the
sentences.

III. CHANNEL STATE INFORMATION

Modern WiFi devices that support IEEE 802.11n/ac stan-
dard typically consist of multiple transmit and multiple receive
antennas and thus support MIMO. Each MIMO channel be-
tween each transmit-receive (TX-RX) antenna pair of a trans-
mitter and receiver comprises of multiple subcarriers. These
WiFi devices continuously monitor the state of the wireless
channel to effectively perform transmit power allocations and
rate adaptations for each individual MIMO stream such that
the available capacity of the wireless channel is maximally
utilized [24]. These devices quantify the state of the channel
in terms of CSI values. The CSI values essentially characterize
the Channel Frequency Response (CFR) for each subcarrier
between each transmit-receive (TX-RX) antenna pair. As the
received signal is the resultant of constructive and destructive
interference of several multipath signals scattered from the
walls and surrounding objects, the disturbances caused by
movement of hands and fingers while typing on a keyboard
near the WiFi receiver not only lead to changes in previously
existing multipaths but also to the creation of new multipaths.
These changes are captured in the CSI values for all subcarri-
ers between every TX-RX antenna pair and can then be used
to recognize keystrokes.

Let MT denote the number of transmit antennas, MR denote
the number of receive antennas and Sc denote the number
of OFDM sub-carriers. Let Xi and Yi represent the MT

dimensional transmitted signal vector and MR dimensional
received signal vector, respectively, for subcarrier i and let
Ni represent an MR dimensional noise vector. An MR×MT

MIMO system at any time instant can be represented by the
following equation.

Yi = HiXi +Ni i ∈ [1, Sc] (1)
In the equation above, the MR × MT dimensional channel
matrix Hi represents the Channel State Information (CSI) for
the sub-carrier i. Any two communicating WiFi devices esti-
mate this channel matrix Hi for every subcarrier by regularly
transmitting a known preamble of OFDM symbols between
each other. For each Tx-Rx antenna pair, the driver of our
Intel 5300 WiFi NIC reports CSI values for Sc = 30 OFDM
subcarriers of the 20 MHz WiFi Channel [25]. This leads to
30 matrices with dimensions MR ×MT per CSI sample.

A. WiKey Overview
To recognize keystrokes from CSI time series, WiKey needs

classification models for all keystrokes. WiKey first generates
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these classification models using the following four steps and
then uses them to classify previously unseen keystrokes.

The first step is to remove noise from the time series of CSI
values. The CSI time series reported by WiFi NICs contain
a large amount of noise even when the environment is static.
WiKey removes the noise in two steps. First, it passes CSI time
series of all subcarriers for each TX-RX antenna pair through
a low-pass filter to remove high frequency noises. Second,
it leverages our observation that the variations in the CSI
time series of all subcarriers due to the movements of hands
and fingers are correlated and applies Principal Component
Analysis (PCA) on the filtered subcarriers to extract the signals
that only contains variations caused by movements of hands
with acceptable levels of noise.

The second step is to detect the starting and ending points
of keystrokes and extract the CSI waveforms for individual
keystrokes. WiKey uses our keystroke extraction algorithm to
identify the starting and ending points of individual keystrokes
in a given CSI time series by leveraging the observation that
CSI waveforms of different keystrokes show similar trends
in the rates of change in the CSI values at the start and
end of any keystroke. Our keystroke extraction algorithm
takes into account the variations in the CSI time series of
all subcarriers for all TX-RX antenna pairs during keystroke
extraction to minimize chances of detection errors, including
missed keystrokes, false positives and detection of the same
keystroke multiple times.

The third step is to extract appropriate features from the CSI
waveforms of keystrokes to generate classification models. For
this, WiKey applies Discrete Wavelet Transform (DWT) on
those waveforms to obtain shape features of keystrokes. These
shape features obtained from DWT preserve both frequency
and time domain information of the CSI waveforms and while
at the same time reduce the number of samples in the CSI
waveform, which helps in reducing the computational cost.

The fourth step is to generate classification models using
these shape features for keystrokes. WiKey trains an ensemble
of classifiers to generate classification model for each key
using the training data of the user. We chose k-Nearest Neigh-
bor (kNN) classifier because it essentially searches the entire
feature space to match the shape features of one keystroke with
others, and thus is most suited for this particular application.
To compare the shape features of any two keystrokes, WiKey
uses Dynamic Time Warping (DTW) based distance metric
while training the kNN classifier.

IV. NOISE REMOVAL

The CSI values provided by commodity WiFi NICs are
inherently noisy because of the frequent changes in internal
CSI reference levels, transmit power levels, and transmission
rates. To use CSI values for recognizing keystrokes, such
noise must first be removed from the CSI time series. For
this, WiKey first passes the CSI time series from a low-
pass filter to remove high frequency noises. Unfortunately, a
simple low pass filter does not denoise the CSI values very
efficiently. Although strict low-pass filtering can remove noise
further, it causes loss of useful information from the signal
as well. To extract useful signal from the noisy CSI time
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Fig. 2: Original and filtered CSI time series

series, WiKey leverages our observation that the variations in
the CSI time series of all subcarriers due to the movements of
hands and fingers are correlated. Therefore, it applies Principal
Component Analysis (PCA) on the filtered subcarriers to
extract the signals that only contain variations caused by
movements of hands. Next, we first describe the process of
applying the low-pass filter on the CSI time series and then
explain how WiKey extracts hand and finger movement signal
using our PCA based approach.

A. Low Pass Filtering
The frequency of variations caused due to the movements of

hands and fingers lie at the low end of the spectrum while the
frequency of the noise lies at the high end of the spectrum.
To remove noise in such a situation, Butterworth low-pass
filter is a natural choice which does not significantly distort
the phase information in the signal and has a maximally flat
amplitude response in the passband and thus does not distort
the hand and finger movement signal much. WiKey applies
the Butterworth filter on the CSI time series of all subcarriers
in each TX-RX antenna pair so that every stream experiences
similar effects of phase distortion and group delay introduced
by the filter. Although this process helps in removing some
high frequency noise, the noise is not completely eliminated
because Butterworth filter has slightly slow fall off gain in
the stopband. We observed experimentally that the frequencies
of the variations in CSI time series due to hand and finger
movements while typing approximately lie anywhere between
3Hz to 80 Hz. As we sample CSI values at a rate of Fs = 2500
samples/s, we set the cut-off frequency ωc of the Butterworth
filter at ωc = 2π∗f

Fs
= 2π∗80

2500 ≈ 0.2 rad/s. Figure 2(a) shows
the amplitudes of the unfiltered CSI waveform of a keystroke
and Figure 2(b) shows the resultant from the Butterworth filter.
We observe that Butterworth filter successfully removes most
of the bursty noises from the CSI waveforms.

B. PCA Based Filtering
We observed experimentally that the movements of hands

and fingers results in correlated changes in the CSI time series
for each subcarrier in every transmit-receive antenna pair.
Figure 3 plots the amplitudes of CSI time series of 10 different
subcarriers for one transmit-receive antenna pair while a user
was repeatedly pressing a key. We observe from this figure that
all subcarriers show correlated variations in their time series
when the user presses the keys. The subcarriers that are closely
spaced in frequency show identical variations whereas the
subcarriers that farther away in frequency show non-identical
changes. Despite non-identical changes, a strong correlation
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Fig. 3: Correlated variations in subcarriers

still exists even across the subcarriers that are far apart in
frequency. WiKey leverages this correlation and calculates the
principal components from all CSI time series. It then chooses
those principal components that represent the most common
variations among all CSI time series.

There are two main advantages of using PCA. First, PCA
reduces the dimensionality of the CSI information obtained
from the 30 subcarriers in each TX-RX stream, which is
useful because using information from all subcarriers for
keystroke extraction and recognition significantly increases
the computational complexity of the scheme. Consequently,
PCA automatically enables WiKey to obtain the signals that
are representative of hand and finger movements, without
having to devise new techniques and define new parameters
for selecting appropriate subcarriers for further processing.
Second, PCA helps in removing noise from the signals by
taking advantage of correlated varations in CSI time series
of different subcarriers. It removes the uncorrelated noisy
components, which can not be removed through traditional
low pass filtering. This PCA based noise reduction is one
of the major reasons behind high keystroke extraction and
recognition accuracies of our scheme.

V. KEYSTROKE EXTRACTION

WiKey segments the CSI time series to extract the CSI
waveforms for individual keystrokes. For this, WiKey operates
on the CSI time series resulting from the butterworth filtering.
Let Ht,r(i) be an Sc × 1 dimensional vector containing the
CSI values of the Sc subcarriers between an arbitrary TX-RX
antenna pair t − r for the ith CSI sample. Let Ht,r be an
N × Sc dimensional matrix containing the CSI values of the
Sc subcarriers between an arbitrary TX-RX antenna pair t− r
for N consecutive CSI samples. This matrix is given by the
following equation.

Ht,r = [Ht,r(1)|Ht,r(2)|Ht,r(3)|...|Ht,r(N)]T (2)
The columns of the matrix Ht,r represent the CSI time series
for each OFDM subcarrier. To detect the starting and ending
points of any arbitrary key, WiKey first normalizes the Ht,r

matrix such that every CSI stream has zero mean and unit
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Fig. 4: PCA of Z-normalized CSI stream Zt,r

variance. We denote the normalized version of Ht,r by Zt,r.
WiKey then performs the PCA based dimensionality reduction
and denoising (as described in Section IV-B) on Zt,r and the
resultant waveforms are further processed to detect the starting
and ending points of the keystrokes from this particular TX-
RX antenna pair. WiKey repeats this process on the CSI time
series for all antenna pairs and obtains values for starting and
ending points for keys based on the CSI time series from each
antenna pair one by one. Finally, WiKey combines the starting
and ending points obtained from all TX-RX antenna pairs to
calculate a robust estimate of starting and ending points of the
time windows containing those keystrokes. Next we explain
these steps in more detail.

A. PCA on Normalized Stream
Let Φ{1:p}Z be an Sc × p dimensional matrix that contains

the top p principal components obtained from PCA on Zt,r.
We remove the first component from those top p principal
components based on our observation that the first component
captures majority of the noise, while subsequent components
contain information about movements of hands and fingers
while typing. This happens because PCA ranks principal
components in descending order of their variance, due to
which the noisy components with higher variance gets ranked
among top principal components. Due to correlated nature of
variations in multiple CSI time series, the removal of this PCA
component does not lead to any significant information loss as
remaining PCA components still contain enough information
required for successfully detecting starting and ending points
of the keystrokes.

If we exclude the first component, the projection of the
CSI stream Zt,r of t-r transmit-receive antenna pair onto the
remaining principal components Φ{2:p}Z can then be written as:

Z
{2:p}
t,r = Zt,r × Φ{2:p}Z (3)

where Z
{2:p}
t,r is an N× (p−1) dimensional matrix containing

the projected CSI streams in its columns. We choose the p = 4
in our implementation based on our observation that only top 4
principal components contained most significant variations in
CSI values caused by different keystrokes. Figure 4(a) shows
the result of projecting normalized CSI time series Zt,r onto
its top 4 principal components. We observe from Figure 4(b)
that by removing the first principle component, we essentially
remove the most noisy projection among the all 4 projections
of Zt,r.

B. Keystroke Detection
Although existing DFAR schemes propose techniques to

automatically detect the start and end of activities, they can
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not be directly adapted for use in detecting the start and
end of keystrokes. Existing schemes use simple threshold
based algorithms for detecting the start and end of activi-
ties. While, threshold based schemes work well for macro-
movements, they are not well suited for micro-movements
such as those of hands and fingers while typing, where we
need to precisely segment time series of keystrokes that are
closely spaced in time. Unlike general purpose threshold based
algorithms, we propose a keystroke detection algorithm that
provides better detection accuracy, since it is strictly based
on the experimentally observed shapes of different keystroke
waveforms. The intuition behind our algorithm is that the CSI
time series of every keystroke shows a typical increasing and
decreasing trend in rates of change in CSI time series, similar
to the one shown in Figure 2. To detect such increase and
decrease in rates of change in CSI time series, our algorithm
uses a moving window approach to detect the increasing and
decreasing trends in rates of change in all p − 1 time series
for each transmit-receive antenna pair i.e., on each column of
Z2:p
t,r . Our algorithm detects the starting and ending points of

keystrokes in following six steps.
First, the algorithm calculates the mean absolute deviation

(MAD) for each of the p − 1 time series for each window
of size W at j-th iteration. This is done primarily to detect
the extent of variations in the values of a given time series.
The main reason behind choosing MAD instead of variance is
that in calculating, the deviations from the mean are squared
which gives more weight to extreme values. In cases where a
time series contains outliers, this results in undue weight given
to those outlying values and that significantly corrupts the
measure of deviation. The MAD is calculated using following
equation.

4mj [k] =

∑j+W
i=j |Z

{k}
t,r (i)− Z

{k}
t,r (j : j +W )|

W
(4)

where Z
{k}
t,r (j : j + W ) represents the vector of means of

the kth projected CSI stream in j-th window. It calculates the
value of 4mj for each sample point j and for the principle
components 2 ≤ k ≤ p.

Second, the algorithm adds the mean absolute deviations
in each waveform to calculate a combined measure 4Mj

of MAD in all p − 1 waveforms, which is calculated in the
following equation.

4Mj =

p∑
k=2

4mj [k] (5)

Third, the algorithm compares 4Mj to a heuristically set
threshold Thresh. Let δj = 4Mj − Thresh, then δj > 0
shows that the current window j contains significant variations
in CSI amplitudes. Fourth, the algorithm compares δj to its
value in last window δj−1 to detect increasing or decreasing
trend in detected variations. When δj − δj−1 > 0, there is
an increasing trend in the rate of change in combined MAD
(4Mj) of CSI time series and vice versa. These increasing
and decreasing trends are captured in variables iu and du,
respectively. The algorithm increments the value of iu by 1
whenever δj−δj−1 > 0 and du by 1 whenever δj−δj−1 < 0.
Let σ represent forgetting factor, which is used to “forget” the
variations caused by noise to avoid false positives. To forget

such variations, the algorithm decrements both iu and du by
1 if 4Mj < Thresh for a duration of σW .

Fifth, as soon as the values of iu and du exceed empirically
determined thresholds Iu and Du, respectively, the algorithm
detects the start of the keystroke. As soon as the algorithm
detects a keystroke, it estimates the starting point sm and
ending point em of the keystroke waveforms using following
equations.

sm = j − βW −Bleft (6)
em = j − βW + tavg +Bright (7)

where tavg is the average number of data points spanned by
waveforms of different keystrokes, β is the span factor which
determines the estimated starting point of the keystroke and
Bleft and Bright are guard intervals on both sides of the
estimated keystroke interval. The guard intervals ensure that
the detected keystroke waveforms are complete.

Last, our algorithm calculates the sum of powers in all wave-
forms lying within those starting and ending points and then
compares this combined power with a sum power threshold
(Pavg) to confirm the presence of a complete keystroke within
that interval. This ensures that the training models are built
using only those waveforms which contain complete shapes
of the keystrokes. Once keystroke detection is confirmed,
the algorithm finally returns the starting point (sm) of the
detected keystroke and jumps 4tavg data points ahead of
sm to look for next keystroke, where 4tavg is the average
number of data points between arrival of two consecutive
keystrokes. From the CSI data set we collected from our
volunteers, we observed that on average the waveforms of a
keystroke spanned tavg ≈ 650 data points and average number
of data points between arrival of two consecutive keystrokes
was 4tavg ≈ 1250 data points at the CSI sampling rate of
Fs = 2500 samples/s. We empirically determined appropriate
values for the remaining constants including W , Du, Iu, σ,
β, Bleft, Bright, Thresh and Pavg .

C. Combining Results from Antenna Pairs
As mentioned earlier, we obtain the starting points of

keystrokes independently from each TX-RX antenna pair. Let
St,r represent the set containing the starting points of all
keystrokes obtained from the keystroke detection algorithm
applied on the antenna pair t− r. First, we obtain the set St,r
for each t − r pair. Second, we take the average of all the
starting points that are within 4tavg of each other in all sets
St,r to obtain a robust estimate of starting points of keystrokes.
Third, based on experimentally measured average span tavg
of different keystrokes, we calculate the ending points of all
keystrokes by simply adding tavg to the corresponding starting
point.
D. Extracting Keystroke Waveforms

Once the algorithm calculates the set of starting and cor-
responding ending points for keystrokes, we use those points
to extract the waveforms from CSI matrix Ht,r. Let Km,t,r

represent the CSI waveform of mth keystroke extracted from
the antenna pair t-r. Let sm represent the average of the
starting points for the mth keystroke from all antenna pairs.
We can express Km,t,r in terms of Ht,r follows.

Km,t,r = Ht,r(sm : sm + tavg) (8)
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After extracting the CSI waveforms Km,t,r from all sub-
carriers of the t-r antenna pair, we apply PCA on those CSI
waveforms to remove the noisy components and obtain the
components that represent the variations caused by movements
of hands and fingers.

Unlike principle components derived from normalized
streams, it is difficult to decide which PCA component repre-
sents noise and should be removed from the top p principal
components for the case of Km,t,r. The difficulty arises
because Km,t,r contains the set of waveforms for a specific
keystroke instead of the whole CSI stream, due to which the
variance of noisy component often becomes small. We observe
that the noisy PCA component keeps changing positions
between 1st and 2nd place among the sorted PCA components
for different extracted keystroke waveforms. In order to get rid
of this problem, we first project Km,t,r onto all top q principal
components. Let Φ{1:q}K be an Sc × q dimensional matrix that
represent the top q principal components in Km,t,r obtained
after applying PCA and K

{1:q}
m,t,r be an L×q dimensional matrix

containing the projected CSI streams in its columns, where L
is the length of segmented keystroke waveform. Thus, K{1:q}m,t,r

is given by the following equation.

K
{1:q}
m,t,r = Km,t,r × Φ{1:q}K (9)

In our implementation, we choose q = 4. This choice is
again based on the observation that the top 4 principal com-
ponents contain enough information about keystrokes required
to achieve high accuracy during classification.

To detect which waveform in K
{1:q}
m,t,r represents the noisy

projection, we chose the top 2 projected waveforms and divide
each of them into R bins and calculate the variances in those
bins. We then compare the variances calculated for different
bins of one waveform with the corresponding bins of the other
waveform. The waveform that has larger number of higher
variance bins is considered to be the noisy projection, which
we remove from K

{1:q}
m,t,r to finally get q− 1 waveforms. Here

we leverage the fact that although overall variance of a noisy
projection may be smaller than the variance of other wave-
forms, but if the waveform is divided into appropriate number
of smaller bins then the number of bins in which the variance
of the noisy projection is higher than the corresponding bins of
other waveforms is always larger. This is because the impact
of noise is more dominant in smaller time windows compared
to larger time windows. We used R=10 in our implementation
of WiKey.

PCA can lead to different ordering of principal components
in waveforms of different keystrokes of the same key, because
the ordering of waveforms done by PCA is based solely on
the value of their variance, which can change even if a key
is pressed in a slightly different way. This is problematic
because to recognize the keystrokes, we need to compare the
projections of an unseen key with the corresponding projec-
tions of the keys in the training data. In order to minimize
the possibility of reordering, we order the projected keystroke
waveforms in descending order of their peak to peak values
before using the waveforms for feature extraction and classifier
training.
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Fig. 6: Feature extraction from 2nd keystroke waveforms
extracted from TX-1, RX-1 for I and O

VI. FEATURE EXTRACTION

To differentiate between keystrokes, we need to extract fea-
tures that can uniquely represent those keystrokes. As different
keys on a keyboard are closely placed, standard features such
as maximum peak power, mean amplitude, root mean square
deviation of signal amplitude, second/third central moments,
rate of change, signal energy or entropy, and number of zero
crossings cannot be used because adjacent keys give almost
the same values for these features. Tables I and II show means
and variances of some of these features calculated for 2nd

waveform in the extracted CSI-waveforms for keystrokes of
alphabetic keys pressed by a users. It can be observed that
the values of these features for different keys (for example
‘c’ and ‘d’) come out to be very similar. Looking at the
means calculated for features like energy and number of zero
crossings in Table I, it seems that they have different values for
different keys. But as we observe from Table II, the variance of
those features is high. Due to the reasons above, it becomes
infeasible to use these features for keystroke classification.
Frequency analysis is also not feasible because the frequency
components in keystrokes of many different keys are similar.
Another reason behind inapplicability of frequency domain
analysis is that they lead to complete loss of time domain
information.

From our data set, we have observed that although the
frequency components in most keys are similar, they occur
at different time instants for different keys. Therefore, we use
shapes of the extracted keystroke waveforms as their features
because the shapes retain both time and frequency domain
information of the waveforms and are thus more suited for use
in classification. We observed experimentally that the shapes
of different keystroke waveforms were quite different from
each other, as shown by Figure 5(a) and 5(b).

Directly using the extracted keystroke waveforms as
keystroke features leads to high computational costs in the
classification process because waveforms contain hundreds
of data points per keystroke. Therefore, we apply Dis-
crete Wavelet Transform (DWT) to compress the extracted
keystroke waveforms while preserving most of the time and
frequency domain information.

The DWT of a discrete signal y[n] can be written in terms
of wavelet basis functions as:

y[n] =
1√
L

∑
k

λ(j0, k)ϕj0,k(n)+
1√
L

∞∑
j=j0

∑
k

γ(j, k)ψj,k(n)
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Fig. 5: Keystroke waveforms extracted from TX-1, RX-1 for I and O

TABLE I: Average values of features extracted from keystrokes of keys a-z collected from user 10
Features a b c d e f g h i j k l m n o p q r s t u v w x y z

Mean amplitude -0 -0.04 0.0124 -0.03 0.045 -0.043 -0.076 -0.06 0.014 -0.03 0.03 -0.01 -0 0.032 0.02 0.03 -0.012 0.008 0.054 7E-04 -0.013 -0.02 -0 -0.1 -0.02 0.06
Second central moment 0.08 0.133 0.0801 0.083 0.156 0.1818 0.6523 0.263 0.12 0.231 0.33 0.11 0.1 0.108 0.09 0.19 0.1022 0.051 0.245 0.192 0.062 0.12 0.097 0.26 0.09 0.21

Third central moment 0.02 -0.03 0.0036 -0.01 0.029 -0.06 -0.919 -0.05 -0.01 -0.1 0.05 0.02 -0 0.01 0.01 0.04 -0.006 0.003 0.098 -0.101 -0.01 0.029 0.023 -0 -0.02 0.04
RMS deviation 0.27 0.359 0.2782 0.285 0.385 0.4244 0.7899 0.506 0.332 0.472 0.57 0.32 0.3 0.323 0.29 0.43 0.3137 0.222 0.472 0.434 0.242 0.335 0.306 0.5 0.3 0.45

Energy 71.5 116.6 69.788 73.34 137.5 159.43 570.8 232.1 104.8 201.4 288 95.2 83.7 94.98 75.6 167 88.928 44.22 215.5 167.1 54.56 104.4 84.48 227 81.5 182
Entropy 9.76 9.762 9.7616 9.762 9.762 9.7616 9.7616 9.762 9.762 9.762 9.76 9.76 9.76 9.762 9.76 9.76 9.7616 9.762 9.762 9.762 9.762 9.762 9.762 9.76 9.76 9.76

Zero Crossings 11.8 6.913 12.363 6.225 6.4 4.375 4.075 3.4 12.08 9.088 6.05 13.7 10 9.063 13.8 12.9 11.85 15.41 6.35 12.85 16.75 11.88 14.3 6.48 10.1 7.55

TABLE II: Variance of different features extracted from keystrokes of keys a-z collected from user 10
Features a b c d e f g h i j k l m n o p q r s t u v w x y z

Mean amplitude 0.00029 4E-04 0.0003 1E-04 4E-04 0.0002 0.0003 8E-04 5E-04 5E-04 5E-04 2E-04 5E-04 3E-04 3E-04 5E-04 0.0003 0.00018 6E-04 4E-04 3E-04 1E-04 3E-04 4E-04 6E-04 4E-04
Second central moment 0.00513 0.003 0.0011 0.001 0.007 0.0028 0.1008 0.012 0.005 0.009 0.016 0.006 0.002 0.003 0.002 0.007 0.0017 0.00041 0.03 0.003 0.001 0.006 0.002 0.007 0.003 0.005

Third central moment 0.00155 9E-04 0.0001 2E-04 0.002 0.0033 0.7021 0.002 0.001 0.007 0.009 0.017 5E-04 3E-04 5E-04 0.003 0.0003 7.70E-05 0.024 0.003 1E-04 0.015 9E-04 0.001 6E-04 0.003
RMS deviation 0.0108 0.006 0.0031 0.004 0.011 0.0038 0.0348 0.011 0.011 0.01 0.012 0.009 0.006 0.005 0.004 0.008 0.0042 0.00196 0.026 0.004 0.004 0.008 0.004 0.007 0.007 0.007

Energy 3874.59 2283 816.91 912.4 5204 2160 76863 9315 3925 6846 12094 4883 1679 2153 1150 5048 1296.2 308.95 23201 2181 886.9 4714 1403 5166 2100 4147
Entropy 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Zero Crossings 26.3859 12.36 33.196 12.94 9.433 6.2627 3.9943 3.585 44.91 13.14 12.58 31.14 28.51 15.25 29.24 24.09 21.673 17.3847 12.21 17.7 36.85 21.63 27.71 13.67 31.49 6.529

where L represents the length of signal y[n]. The functions
ϕj,k(n) are called scaling functions, where as the correspond-
ing coefficients λ(j, k) are known as scaling or approximation
coefficients. Similarly, the functions ψj,k(n) are known as
wavelet functions and the corresponding coefficients γ(j, k)
are known as wavelet or detail coefficients.

To calculate approximation and detail coefficients, the scal-
ing and wavelet functions are chosen such that they are
orthonormal to each other. Thus, the following condition holds.

〈ψj,k(n), ϕj0,m(n)〉 = δj,j0δk,m

Based on the condition above, the approximation and detail
coefficients calculated for j-th scale can then be written as:

λ(j, k) = 〈y[n], ϕj+1,k(n)〉 =
1√
L

∑
n

y[n]ϕj+1,k(n)

γ(j, k) = 〈y[n], ψj+1,k(n)〉 =
1√
L

∑
n

y[n]ψj+1,k(n)

To achieve desired compression using DWT, we need to
select appropriate wavelet and scaling filters. We tested the
accuracy of our classifier using two different wavelet filters:
Daubechies and Symlets. We choose Daubechies D4 (four
coefficients per filter) wavelet and scaling filters because
the models trained with the DWT features extracted using
these filters achieved higher classification accuracy. For each
keystroke, we perform DWT 3 times on each one of its
(q − 1) = 3 waveforms, which is achieved by applying
DWT on the approximation coefficients obtained from the
previous steps. We choose to apply DWT 3 times because
this preserves enough details of those waveforms required
for successful classification while achieving maximum com-
pression. WiKey uses only the approximation coefficients as

keystroke features and discards the detail coefficients because
approximation coefficients alone result in good classification
accuracy. Therefore, we have 3×MT ×MR keystroke shapes
for every keystroke, i.e. the approximation coefficients of all
3 waveforms extracted from the CSI time series in each TX-
RX antenna pair, where MT is the number of transmitting
antennas and MR is the number of receiving antennas. Figures
5(a) through 6(b) show feature extraction procedure performed
on the 2nd keystroke waveforms for keys ‘i’ and ‘o’, extracted
from TX-1, RX-1 antenna pair.

VII. CLASSIFICATION

After obtaining DWT based shape features of keystrokes,
WiKey builds training models for classification using them.
As WiKey needs to compare shape features of different
keystrokes, we need a comparison metric that provides an
effective measure of similarity between shape features of
two keystrokes. WiKey uses a well-known method called
dynamic time warping (DTW) that calculates the distance
between waveforms by performing optimal alignment between
them. Using DTW distance as the comparison metric between
keystroke shape features, WiKey trains an ensemble of k-
nearest neighbour (kNN) classifiers using those features from
all TX-RX antenna pairs. WiKey obtains decisions from each
classifier in the ensemble and uses majority voting to obtain
final result. Next, we first explain how we apply DTW on the
keystroke shape features and then explain how we train the
ensemble of classifiers.

A. Dynamic Time Warping
DTW is a dynamic programming based solution for obtain-

ing minimum distance alignment between any two waveforms.
DTW can handle waveforms of different lengths and allows a
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non-linear mapping of one waveform to another by minimizing
the distance between the two. In contrast to Euclidean distance,
DTW gives us intuitive distance between two waveforms by
determining minimum distance warping path between them
even if they are distorted or shifted versions of each other.
DTW distance is the Euclidean distance of the optimal warp-
ing path between two waveforms calculated under boundary
conditions and local path constraints [26]. In our experiments,
DTW distance proves to be very effective metric for comparing
two shape features of different keystrokes. WiKey uses the
open source implementation of DTW in the Machine Learning
Toolbox (MLT) by Jang [27]. WiKey uses local path con-
straints of 27, 45, and 63 degrees while determining minimum
cost warping path between two waveforms. For the features
extracted for keys ‘i’ and ‘o’ shown in figures 5(a) and 5(b),
the DTW distance among features of key ‘i’ was 18.79 and
among features of key ‘o’ was 19.44. However, the average
DTW distance between features of these keys was 44.2.

B. Classifier Training

To maximize the advantage of having multiple shape fea-
tures per keystroke obtained from multiple transmit-receive
antenna pairs, we build separate classifiers for each of those
shape features. We build an ensemble of 3 × MT × MR

classifiers using kNN classification scheme. WiKey requires
the user to provide training data for the keystrokes to be
recognized and each classifier is trained using the correspond-
ing features extracted from CSI time series from all TX-RX
antenna pairs. To classify a detected keystroke, WiKey feeds
the shape features of that keystroke to their corresponding kNN
classifiers and obtains a decision from each classifier in the
ensemble. Each kNN classifier searches for the majority class
label among k nearest neighbors of the corresponding shape
feature using DTW distance metric. WiKey calculates the final
result through majority voting on the decisions of all kNN
classifiers in the ensemble.

C. Behavioral Clustering of User Data

In this section, we explain how we use the relative consis-
tency of multiple training samples to reduce the computational
complexity of WiKey’s classification process in real-world
experimental scenarios, where users type sentences, consisting
of multiple different types of keystrokes. We observed from
our experiments that every user has several distinct styles of
pressing each key. We also observed that these distinct styles
of pressing the keys remained consistent over time for all
users. To utilize this consistency during classification, WiKey
applies hierarchical clustering with Wards linkage [28] on the
training samples. WiKey uses DTW distance as comparison
metric during this behavioral clustering step. It also provides
the expected number of clusters C to the hierarchical clustering
algorithm. After dividing the training samples into C clusters,
WiKey randomly picks P percent of samples to train the KNN
classifiers. Although behavioral clustering increases the clas-
sification speed, it slightly reduces the overall accuracies. We
discuss this trade-off between speed and accuracy in Section
VIII-E when evaluating WiKey’s performance on recognizing
sentences in real world typing scenario.

VIII. IMPLEMENTATION & EVALUATION

A. Hardware Setup
We implemented our scheme using off-the-shelf hardware

devices. Specifically, we use a Lenovo X200 laptop with
Intel Link 5300 WiFi NIC as the receiver that connects to
the three antennas of the X200 laptop. The X200 laptop has
2.26GHz Intel Core 2 Duo processor with 4GB of RAM and
Ubuntu 14.04 as its operating system. We used TP-Link TL-
WR1043ND WiFi router as transmitter operating in 802.11n
AP mode at 2.4GHz. We collect the CSI values from the Intel
5300 NIC using a modified driver developed by Halperin et
al. [25]. The transmitter has 2 antennas and the receiver has 3
antennas, i.e., MT = 2 and MR = 3. This gives 3×2×3 = 18
classification models for each key in our evaluations.

We place the X200 laptop at a distance of 30 cm from
the keyboard such that the back side of its screen faces the
keyboard on which the users type and its screen is within
the line-of-sight (LOS) of the WiFi router it is connected to.
The distance of WiFi router from the target keyboard is 4
meters. The CSI values are measured on ICMP ping packets
sent from the WiFi router, i.e., the TP-Link TL-WR1043ND,
to the laptop at high data rate of about 2500 packets/s. Setting
a higher ping frequency leads to higher sampling rate of CSI,
which ensures that the time resolution of the CSI values is
high enough for capturing maximum details of different type
of keystrokes.

B. Data Collection
To evaluate the accuracy of WiKey, we collected training

and testing dataset from 10 users. Due to the lengthy nature
of the experiments, we managed to find only 10 volunteers
for our experiments. These 10 users are university students
who volunteered for the experiments and only 2 out of them
had some know how of wireless communication. Fortunately,
we observed that these 10 users still provided a reasonable
level of diversity in terms of different typing behaviors. Our
experimental observations acknowledge this diversity in typing
behaviors of different users in terms of different values of
keystroke extraction and recognition accuracies corresponding
to different users. Users 1–9 first provided 30 samples for
each of the 37 keys (26 alphabets, 10 digits and 1 space bar)
by pressing that key multiple times. After this, these users
typed the sentence S1 = “the quick brown fox jumped over
the lazy dog” two times, without spaces.

To evaluate how the number of training samples impact the
accuracy, we collected 80 samples for each of the 37 keys from
User 10. Afterwards, this user typed each of the following
sentences 5 times, without spaces: S1 =“the quick brown
fox jumps over the lazy dog”, S2 = “nobody knew why the
candles blew out”, S3 = “the autumn leaves look like golden
snow”, S4 = “nothing is as profound as the imagination”
and S5 = “my small pet mouse escaped from his cage”. We
asked users to type naturally with multiple fingers but only
press one key at a time while keeping the average keystroke
inter-arrival time at 1 second. After recording the CSI time
series for each of the above experiments, we first applied our
keystroke extraction algorithm on those recorded CSI time
series to extract the CSI waveforms for individual keys and
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Fig. 9: Keystroke extraction results
then extracted the DWT based shape features from each of the
extracted keystroke waveforms.

C. Keystroke Extraction Accuracy
We evaluate the accuracy of our keystroke extraction algo-

rithm in terms of the detection ratio, which is defined as the
total number of correctly detected keystrokes in a CSI time
series divided by the total number of actual keystrokes. The
detection ratio of our proposed algorithm is more than 97.5%.
Figure 9(a) shows the color map showing the percentage of
the missed keystrokes of all 37 keys for all 10 users.

The darker areas represent higher rate of missed keystrokes.
We can observe from this figure that the number of missed
keystrokes vary for different individuals depending upon their
typing behaviors. For example we observed that the keystrokes
of user 4 were missed in higher percentage with average
detection ratio of 91.8% whereas the keystrokes of user 10
were not missed at all with average detection ratio of 100%
calculated over all 37 keys. The lower extraction accuracy
for user 4 shows that more keystrokes were missed, which
is due to the significant difference in his typing behavior
compared to other users. The accuracy of our scheme for such
a user can be increased significantly by tuning the parameters
of our algorithm for the given user. We also observe from
this figure that the keystrokes that are missed are usually
those for which fingers move very little when typing. For
example, in pressing keys ‘a’, ‘d’, ‘f’, ‘i’, ‘j’ and ‘x’ the
hands and fingers move very little, and thus the variations in
the CSI values sometimes go undetected. Figure 9(b) shows
the keystroke extraction rate for each user averaged over all
37 keys. The experimental results show that our keystroke
extraction algorithm is robust because it consistently achieves
high performance over different users without requiring any
user specific tuning of system parameters.

D. Classification Accuracy
We evaluate the classification accuracy of WiKey through

two sets of experiments. In the first set of experiments, we
build classifiers for each of the 10 users using 30 samples
and measure the 10-fold cross validation accuracy of those
classifiers. In the second set of experiments, we build classifier
for user 10 while increasing the number of samples from
30 to 80 in order to observe the impact of increase in the
number of training samples on the classification accuracy.
Cross validation automatically picks a part of data for training
and remaining for testing and does not use any data in testing
that was used in training. Recall that the WiKey uses kNN
classifiers for recognizing keys. In all experiments, k = 5.
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Fig. 10: Color map of user 10’s confusion matrix

1) Accuracy with 30 Samples per Key: We evaluate the
classification accuracy of WiKey in terms of average accuracy
per key and average accuracy on all keys of any given user.
We also present confusion matrices resulting from our experi-
ments. A confusion matrix tells us which key was recognized
by WiKey as which key with what percentage. We calculate the
average accuracy per key by taking the average of confusion
matrices obtained from all users and average accuracy on all
keys of any given user by averaging the accuracy on all keys
within the confusion matrix of that user. For each user, we
trained each classifier using features from 30 samples of each
key. We conducted our experiments on all 37 keys as well as on
only 26 alphabet keys and performed 10-fold cross validation
to obtain the confusion matrices.

Fig. 11: Per user average classifier accuracy

WiKey achieves an overall keystroke recognition accuracy
of 82.87% in case of 37 keys and 83.46% in case of 26
alphabetic keys when averaged over all keys and users. Figure
12 shows the recognition accuracy for each key across all
users for the 26 alphabetic keys. Similarly, Figure 13 shows
the recognition accuracy for each key across all users for all
37 keys. Figure 11 shows the average recognition accuracy
achieved by each user for both 26 keys and 37 keys. We
observe that the recognition accuracy for 26 alphabetic keys
is on average greater than the recognition accuracy for the all
37 keys. This is because the keystroke waveforms of the digit
keys (0-9) often show similarity with keystroke waveforms of
alphabet keys in the keyboard row staring with QWE, which
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Fig. 13: Mean accuracy for all 37 keys (Users 1-10)

leads to slightly greater number of misclassifications.
2) Accuracy vs. the Size for Training Set: To determine the

impact of the number for training samples on the accuracy of
WiKey, we again perform two sets of experiments: one for 26
alphabetic keys and other for all 37 keys.

The accuracy of WiKey increases when the number of
training samples per key are increased from 30 to 80. Figure
7 shows the results from 10-fold cross validation for the 26
alphabetic keys when 80 training samples are used per key.
We observe from this figure that the recognition accuracy
increased from 88.3% (as seen in Figure 11) to 96.4% when
the number of training samples are increased from 30 to 80.
Figure 8 shows the results from 10-fold cross validation for all
37 keys when 80 training samples are used per key. We again
observe that the recognition accuracy increased from 85.95%
(as seen in Figure 11) to 89.7% when the number of training
samples are increased from 30 to 80. The gray-scale maps of
the confusion matrix obtained after 10-fold cross-validation on
80 training samples of User 10 is shown in Figure 10.

3) Effects of CSI Sampling Rate and Training Samples: In
previous experiments, we used high CSI sampling rate of 2500
samples/s. Furthermore, the 10-fold cross validation automat-
ically chose 10% of the data for testing and remaining 90%
for training. Next, we evaluate the effect of changing the CSI
sampling rate and the percentage of data used for training on
accuracy. To extract keystrokes, we halved the values used for
W , Du, Iu, Bleft, and Bright. We performed X−fold cross
validation (2 ≤ X ≤ 10) on the data obtained for alphabetic
keys from user 10. Figure 14 plots the accuracies for number
of folds varying from 2 to 10, where each plotted value if the
average over all alphabet keys. We observe from Figure 14

that the accuracies dropped compared to previously achieved
accuracy because of the drop in resolution of keystroke shapes
due to reduced sampling rate. We also observe that recognition
accuracies of the keys for which hands and fingers move
little were affected the most. When 50% of data was used
for training, i.e., for 2-fold cross validation, the accuracies
for keys ‘j’,‘x’,‘v’ and ‘p’ dropped below 60%. However, the
average accuracy remained approximately 80% for all folds.
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Fig. 14: Multifold cross-validated average accuracies for user
10’s lower resolution keystroke waveforms

E. Real-world Evaluation on Sentences
To evaluate WiKey in real world scenarios, we collected

CSI data for different sentences typed by users 1 through
10, as mentioned in Section VIII-B. To train the classifiers to
recognize keystrokes in sentences, we used the same dataset of
individual keystrokes that we used in the evaluations presented
above. For the test samples, we used the the keystrokes
extracted from datasets obtained from typing the sentences.

1) Accuracy: WiKey achieves an average keystroke recogni-
tion accuracy of 77.43% for typed sentences when 30 training
samples per key were used. For each user, we trained classifiers
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using 30 samples for each of the 26 alphabetic keys. We
then applied our keystroke extraction algorithm to first extract
waveforms of individual keys, applied PCA on them to denoise
the waveforms and then extracted the shape features for each
extracted key and feeded them to the classifiers to recognize
the keystrokes in the sentence. Figure 15 shows the keystroke
recognition accuracy for the sentences typed by each user.

WiKey achieves an average keystroke recognition accuracy
is 93.47% in continuously typed sentences with 80 training
samples per key. We first trained classifiers using 80 sam-
ples for each of the 26 alphabetic keys and then fed them
with keystrokes from typed sentences. Figure 16 shows the
keystroke recognition accuracy for all the sentences (S1 to S5)
typed by user 10. The average keystroke recognition accuracy
rate for user 10 in previous experiment, which used 30 samples
for training classifiers was just 80%. Thus, we can conclude
that increasing the number of training samples increases the
accuracy of WiKey.

2) Effects of Behavioral Clustering: In this subsection, we
show how behavioral clustering affects keystroke recognition
time and accuracy of WiKey. As discussed in Section VII-C,
every user has a set of distinct styles of pressing each key
that all occur and stay consistent over time. WiKey leverages
these consistent behaviors to reduce computational complexity
of KNN classifiers by reducing the number of training samples
required to achieve high keystroke recognition accuracies.

Figures 17(a) and 17(b) show the keystroke recognition
accuracy and time, respectively, as we increase the percentage
of samples (P) that WiKey uses for training from each
behavioral cluster. We obtained the results in these two figures
on the keystrokes from the sentence S1 collected from user
10. Each value in these two figures is an average from the
five repetitions of S1. We observe from Figure 17(a) that
average recognition time increases consistently as the number
of samples increase, which is intuitive because complexity
of KNN classification (which relies on exhaustive search)
increases with the increase in the number of training samples.
At the same time, we also observe from Figure 17(b) that the
keystroke recognition accuracy of WiKey suffers when using
fewer training samples. Nonetheless, it still stays above 79%.
Another interesting observation from Figure 17(b) is that the
accuracy of WiKey increases when P increases from 10%
up to 70%, which is intuitive, but it decreases beyond that.
The reason behind this decrease is the inclusion of noisy
and/or inconsistent samples into the training dataset when a
large percentage of training samples is used for training. This
observation implies that the behavioral clustering of training
samples not only helps in decreasing the training time but also
helps in eliminating noisy and inconsistent samples from the
training set, which helps the overall accuracy of WiKey.

3) Auto-Correction and Word Recognition: Next, we apply
dictionary based auto-correction on the recognized keystrokes
and study whether it improves WiKey’s accuracy in terms
of correctly recognizing entire words instead of individual
keystrokes. Auto-correction automatically replaces a word,
which is not part of the dictionary, with its best match.
For word recognition experiments, we chose the number
of behavioral clusters to be C = 6. Furthermore, we use
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Fig. 17: Keystrokes recognition for sentence S1 collected from
user 10 after behavioral clustering
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Fig. 18: Comparison of word recognition accuracies before
and after auto-correction

P = 70% and P = 10% samples, respectively, from each
cluster for training. We average the recognition results for each
sentence over its five repetitions and report the final word
recognition accuracies. During auto-correction, we observed
cases (not shown here) where words containing keystroke(s)
that WiKey recognized incorrectly were actually valid words
in the dictionary. For such cases, auto-correction has no effect
on these words and thus on the recognition accuracy of WiKey.
We treat such words as incorrect while calculating WiKey’s
word recognition accuracy.

Figures 18(a) and 18(b) show WiKey’s word recognition
accuracies, before and after auto-correction, for the five sen-
tences collected from user 10. We observe from these figures
that auto-correction improves word recognition accuracy in
all cases. Furthermore, in some cases (such as for sentence
2 in Figure 18(a)) the word recognition accuracy reaches
up to 100%. Comparing these two figures, we also observe
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Fig. 15: Keystroke recognition for sentences collected
from all users using 30 samples/key

Fig. 16: Keystroke recognition for sentences collected
from user 10 using 80 samples/key

that WiKey achieves higher word recognition accuracies when
P = 70% compared to when P = 10%. This happens due
to the higher individual keystroke recognition accuracies for
P = 70% compared to P = 10%.

IX. LIMITATIONS

Currently, WiKey works well under relatively stable and
controlled environments where the positions of user and hard-
ware setup relative to each other stay almost the same. The
accuracy of our current scheme will be affected by variations
in the environment such as human motion in surrounding
areas, changes in orientation and distance of transceivers [29]
[30], typing speeds, and keyboard layout and size. During
our experiments, we assumed that the major motion is due
to keystrokes of the target user only and no other major
motion such as walking occurs in the room where CSI data is
collected. WiKey may be extended to allow small movements
in the environment e.g. having multiple people walking in the
vicinity. However, this would require training WiKey with the
profiles of those activities and adding the capability to subtract
the waveforms of those activities to extract the waveforms
of keystrokes. Furthermore, most of the parameters used in
our keystroke extraction algorithm are scenario dependent
and need to be updated if CSI sampling rates or physical
environment changes such as change in distance or orientation
of transceivers. In future, we plan to develop schemes for
automatic tuning of WiKey’s system parameters. Based on
our experimental observations, due to inconsistencies in user’s
typing behavior, the shapes of waveforms tend to differ on
different days, given the same experimental setup. However,
we believe that with enough training data collected over
multiple different days for each user, WiKey can recognize
keystrokes even if the users tend to type inconsistently on
different days. One possible solution direction is to divide
each user’s training data for each keystroke into multiple
clusters, and then build classifiers for each of those clusters
for recognize keystrokes.

During data collection, we instructed the users not to move
their heads or other body parts significantly while typing.
However, we allowed natural motions which occur commonly
when a person types, such as eye winking and movements in
the arm, shoulder and fingers on the side of the hand being
used for typing. We also instructed the users to type one key
at a time while keeping the inter-arrival time of keystrokes

between 0.5 to 1 second to facilitate correct identification
of start and end times of keystrokes. Currently, WiKey can
recognize keystrokes only when user types slowly and the
inter-keystroke interval is around 0.5-1 second. However, the
maximum typing speed at which WiKey can achieve accept-
able accuracy depends on the maximum packet transmission
rate that a given WiFi hardware can achieve. Consequently,
the inter-arrival time of keys is limited by the WiFi hardware
and is not the limitation of WiKey. The hardware that we
used has a maximum packet transmission rate limited to 2500
packet/sec. As a result, the maximum CSI sampling rate that
we can achieve is also ≈ 2500 samples/second. A lower CSI
sampling rate makes it difficult to accurately determine the
start and end times of a faster key press, which, in turn, reduces
the keystroke recognition accuracy of WiKey. In future, when
WiFi devices with higher packet transmission rates come in
market, WiKey will be able to achieve faster sampling rate,
will therefore achieve good accuracy with much smaller inter
arrival times. We did allow users to use multiple fingers for
typing so that they use whichever finger they naturally use
to press any given key. Therefore, our experimental scenarios
and the data collected during the experiments allow for incon-
sistencies in typing behavior of different users, i.e. different
samples from the same user can naturally be slightly closer
or further from multiple other samples in a training dataset
corresponding to that user. In its current form, WiKey might
not be suitable for all practical attack scenarios, especially
when the environment is relatively unpredictable because it
is difficult for an attacker to obtain enough training data.
However, there exist ways through which an attacker can
launch an attack using WiKey. For example, an attacker can
start an online chat session with a target user sitting near
him/her in a library, and record CSI values while chatting
with him/her. The attacker can then use the CSI values he/she
captured and use WiKey to recognize the keys the victim is
typing.

X. CONCLUSIONS

In this paper, we make the following key contributions.
First, we propose the first WiFi based keystroke recognition
approach, which exploits the variations in CSI values caused
by the micro-movements of hands and fingers in typing. The
key intuition is that while typing a certain key, the hands and
fingers of a user move in a unique formation and direction
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and thus generate a unique pattern in the time-series of
CSI values for that key. Second, we propose a keystroke
extraction algorithm that automatically detects and segments
the recorded CSI time series to extract the waveforms for
individual keystrokes. Third, we implemented and evaluated
the WiKey system using a TP-Link TL-WR1043ND WiFi
router and a Lenovo X200 laptop. Our experimental results
show that WiKey achieves more than 97.5% detection rate for
detecting the keystroke and 96.4% recognition accuracy for
classifying single keys. In real-world experiments, WiKey can
recognize keystrokes in a continuously typed sentence with
an accuracy of 93.5%. The key scientific value of this work is
in demonstrating the possibility of recognizing micro-gestures
such as keystrokes using commodity WiFi devices. We have
shown that our technique works in controlled environments,
and in future we plan to address the problem of mitigating the
effects of more harsh wireless environments by building on our
micro-gesture extraction and recognition techniques proposed
in this paper. The techniques proposed in this paper can be
potentially useful for many other applications as well [31]–
[65].
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