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Abstract—Distributed clustering based techniques have been
increasingly employed for outlier detection in Wireless Sensor
Networks (WSNs). But despite its numerous advantages such as
online and efficient computations and incorporation of spatio-
temporal & attribute correlations, clustering has not been stud-
ied for event detection & identification, which is essential for
smooth and reliable operations of large scale WSNs. This paper
introduces the significance of clustering based event detection &
identification to the research community. Further, it presents an
online technique for joint event detection and identification that
achieves a very high performance for synthetic and real data
sets with a significant reduction in computational complexity
as compared to the state-of-the-art techniques. A remarkable
advantage of the proposed technique is that it can identify the
key attributes in the order of their contribution towards an event
without incurring any additional complexity.

Keywords: Outlier detection, event detection, clustering, wire-
less sensor networks.

I. INTRODUCTION

Outlier detection in the context of WSNs has attracted
significant attention of research community in the recent years
[1], [2], [3], [4], [5], [6]. More specifically, the classification
based algorithms, such as Support Vector Machines (SVMs),
which ensure a high performance, are being used extensively
for this purpose [7] due to their ability to incorporate spatio-
temporal and attribute correlations of data. Although SVM
based algorithms have been made computationally efficient
by the introduction of Quarter-Sphere SVMs (QS-SVM) [2],
[3], [4], [6], which reduce the quadratic optimization problem
to a linear problem, but the computational cost associated
with SVMs is still high. This can be attributed to the online
processing of data samples, which requires the solution of
a linear optimization problem and mapping of data to a
high dimensional feature space with the arrival of every new
data sample, thus limiting the applicability of SVMs for
environments which have strict latency requirements.

Recently, the clustering based algorithms have been found
to be of significant importance in outlier detection as they are
computationally inexpensive, adhere to strict latency require-
ments during online processing, achieve a high detection and a
very low false positive rate [8], [9], [10], [11]. Moreover, these
algorithms can incorporate a wide variety of multi-variate
data distributions, attribute-temporal correlations and spatial
data non-stationarity associated with dynamically changing
environments.

A primary constraint of clustering algorithms is that they
do not focus on event detection. For example, the algorithm

presented in [12] provides a method for the estimation of
boundary for sensor data. The data samples that fall outside
the estimated boundary are declared as outliers. The authors
of [10] present a method for incrementally updating the sensor
data boundary estimated in [12] by using an exponential
forgetting factor to incorporate the effect of most recently gath-
ered data samples at a sensor node in the network. The method
of [9] facilitates in global outlier detection (data sample(s)
that is anomalous with respect to the entire network) by using
various cluster merging strategies such as compound similarity,
transformation energy similarity and focal similarity. However,
none of these algorithms present a mechanism for event detec-
tion. As event detection in WSNs finds significant applications
in monitoring the environments for critical situations [13], for
instance industrial environments, so it should be studied in the
context of energy efficient clustering algorithms.

In addition to event detection, another important property
that the clustering based algorithms should exhibit is event
identification. State-of-the-art clustering algorithms (like [10])
recommend a manual analysis of the data samples, followed by
outlier or event detection, to determine the attributes involved
or the ‘type’ of event. This is not a useful practice due to a
number of reasons: a) Often the event detection algorithms
do not process raw data. Data may be processed by applying
some transformations, e.g normalization, principal component
analysis, frequency transforms etc. Thus, the manual exam-
ination of attributes may require an inverse transformation
which will pose additional computation overheads. b) Events
are usually caused by a temporal or spatial change in the key
attributes of the system which can be sudden or gradual. In
order to perform a manual examination, continuous monitoring
of the key attributes of a system is required. c) A visual
analysis of data at a central location requires entire data
to be transmitted to the central node. This incurs a huge
communication cost. Thus, clustering based event detection
and identification, which has never been studied before, solves
these problems in a simple and elegant manner.

Following are the significant contributions of this paper:
• Introduction to the problem of ‘clustering based event

detection and identification’.
• Proposition of an online clustering based algorithm for

joint event detection and identification in WSNs that
achieves a very high performance and a significant re-
duction in computational complexity as compared to QS-
SVM based algorithms.

• Event Identification strategy, i.e, identification of the
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Fig. 1. A hierarchical WSN deployed in a region R; consisting of 6 sensor
nodes S1, · · · , S6 and one gateway node Sg

attributes in the order of their increasing contribution
towards an event; a problem that has been dealt for the
very first time and provides an open challenge to the
research community to build and improve on the proposed
algorithm.

II. OVERVIEW OF CLUSTERING BASED OUTLIER
DETECTION

Consider a hierarchical WSN deployed in a region R which
consists of N localized nodes. The network shown in fig. 1
is a hierarchical WSN in which there are six sensor nodes
S1, · · · , S6 and one gateway node Sg. In a hierarchical WSN
the gateway node Sg is responsible for collecting the infor-
mation of entire network from the parent nodes S1, S2. Let
Xk = {x1, x2, · · ·xk} be the k samples of data collected from
the qth WSN node where each sample xi is a column vector
in <d. Let mk and Sk be the sample mean and covariance
of all k samples in Xk, then upto 98% of data in Xk can
be enclosed in a hyperellipsoid of effective radius t by using
t2 = (χd

2)−1
0.98 [10], if Xk is multi-variate normal [12].

ek(mk, S
−1
k , t) = {xiε<d|

√
(xi −mk)TSk

−1(xi −mk)︸ ︷︷ ︸
Di=mahalanobis distance of xi

≤ t}

∀i = 1, 2, · · · , k (1)

The hyperellipsoid ek is defined as the set of all k data
samples xi,∀i = 1, 2, · · · , k whose mahalanobis distance ≤ t.
Whereas, those samples whose mahalanobis distance is greater
than t do not lie inside the hyperellipsoid and are considered
outliers.

This hyperellipsoidal boundary ek can be updated with the
arrival of every new sample xk+1 by using an update formula
for mk and Sk in such a way that the updated boundary can
incorporate data variation in the monitored environment. The
use of an exponential forgetting factor λ(0 < λ < 1) in the
update of mk and Sk for every new measurement incorporates
the effect of most recent data measurements in ek [10].

Xk+1 = Xk

⋃
xk+1

mk+1,λ = λmkλ + (1− λ)xk+1

Sk+1,λ =
λ(k − 1)

k
Skλ+

1

k
(xk+1−mk+1,λ)(xk+1−mk+1,λ)

T

where Xk+1, mk+1,λ and Sk+1,λ are the updated sample set,
mean and covariance of the ellipse ek after the incorporation

of new arrived sample xk+1. For the ease of notation, we
drop the subscripts k+1 and λ and use Xk for Xk+1, mk for
mk+1,λ and Sk for Sk+1,λ.

III. PROPOSED PROJECTION BASED EVENT DETECTION &
IDENTIFICATION

Our proposed algorithm starts with the clustering based
outlier detection algorithm of [10], updates the hyperellipsoid
at each time instant as discussed in the previous section and
declares a newly arrived sample as an outlier or normal. The
algorithm proceeds to event detection and identification
phase (discussed below) if an outlier is detected.

A. Computations at individual nodes

We propose a projection based clustering algorithm for
joint event detection and identification. The d dimensional
hyperellipsoid ek defined in eq (1) contains the vector set
Xk. Let the X be the d dimensional space of Xk and let
Xp be the subspace of X that contains only the pth attribute
present in Xk. The idea is to project the hyperellipsoid ek
along each of the subspace Xp and check the deviation of
individual projections. The event detection algorithm initiates
this processing at all nodes of the region R, even if an outlier
is detected at one node only.

STEP 1: Defining the Projection: Let Vp be a d×1 column
vector Vp = {vl|vlε{0, 1}, l = 1, 2, · · · , d}, where vl = 1, if
l = p and vl = 0∀l 6= p and Id×d be a d× d identity matrix.
We define the projection of ek (containing Xk) along each of
the d subspaces Xp∀p = 1, 2, · · · d (at the qth node) as

Proj(Xk)q = XT
k Id×d

= XT
k

[
V1|V2| · · · |Vd

]
=
[
XT
k V1|XT

k V2| · · · |XT
k Vd

]
=
[
Proj(Xk)1|Proj(Xk)2| · · · |Proj(Xk)d

]
From the above equation Proj(Xk)p = Xk

TVp is the k ×
1 column vector and can be defined as the projection of ek
along the pth subspace Xp. Thus, Proj(Xk)p contains the
projection of each of the d × 1 sample xiεXk along the pth

subspace Xp and Proj(Xk)q contains the projection of this
sample along all the d subspaces. Since there are d subspaces
in total, so Proj(Xk)q is a k × d matrix.

STEP 2: Clustering on Projected Samples: Further we
apply a hyperellipsoidal clustering along each of the projected
sets Proj(Xk)p,∀p = 1, 2, · · · , d and define the resulting
ellipsoid along the pth subspace as

epk(m
p
k, S

p
k
−1
, tp) = ell(Proj(Xk)p) = (2)

{xpi ε<|
√
(xpi −m

p
k)
TSpk

−1
(xpi −m

p
k)︸ ︷︷ ︸

Dp
i =mahalanobis distance of xp

i

≤ tp,∀i = 1, 2, · · · , k}

where Spk
−1 is the inverse of pth diagonal entry of Sk, xpi =

xTi Vp and mp
k = mT

k Vp are the projections of sample xi and
mean mk along the pth subspace. Since each of the d projected
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sets Proj(Xk)p are enclosed in d ellipsoids, the set of all
projected ellipsoids at the qth node can be given as:

Eq = {e1k(m1
k, S

1
k
−1
, t1), · · · , edk(md

k, S
d
k

−1
, td)}

where each of these ellipsoids has an effective radius tp given
as:

tp =
(
uT
p Vp√
λp

−mp
k)√

Spk
2

(3)

and the matrix containing the radii of all projected ellipsoids
can be defined as:

Tq =
[
t1 t2 · · · td

]T
Eq (3) gives the individual effective radii of each of the
projected ellipsoids epk such that an enclosure of atleast 98%
of entire data Xk is guaranteed in ek. In the above equation
λp and up are the pth eigen value-eigen vector pair associated
with S−1

k . The inverse of the square root of the pth eigen value
1/
√
λp is the pth axial length of hyperellipsoid [9] and uTp Vp

is the projection of pth orthonormal eigen vector up along the
pth subspace. Therefore, (uTp Vp/

√
λp−mp

k) is the axial length
of epk or the magnitude of the projection of ek along the pth

subspace and
√
Spk is the standard deviation of Proj(Xk)p.

The angle θ indicates the rotation of hyperellipsoid from any
subspace. This is explained in fig.1 for the case of a 2D
rotated and non-rotated hyperellipsoid. For both cases, the
eigen-vectors up play a role to determine the projections along
pth subspace.

STEP 3: Decision formulation: Let Dq be the k×d matrix
containing the mahalanobis distances Dp

i ( of each xpi from
epk), determined from eq (2) while applying the hyperellip-
soidal clustering algorithm of step 2. Let Dq(k, 1 · · · d) be the
kth row of Dq containing all the d distances corresponding to
the most recent sample xk. Then, the decision about xk being
an outlier or normal can be formulated as

Outlierq,k = u([u(Tq −DT
q (k, 1 · · · d))]T 1d×1 − d) (4)

where [u(Tq−DT
q (k, 1 · · · d))] is a d×1 matrix, each of whose

entry is equal to

u(tp −
√
(xpk −m

p
k)
TSpk

−1
(xpk −m

p
k)︸ ︷︷ ︸

x

),∀p = 1, 2, · · · , d

The term ‘x’ gives the mahalanobis deviation of the kth

sample projected along the pth subspace, i.e, the deviation
of xpkεProj(Xk)p from the effective radius tp of its ellipsoid
epk and u(x) gives the decision about xpk being a normal or
outlying attribute. u(x) = 0 if xpk is an outlying attribute
and 1 if it’s a normal attribute. Thus, the d × 1 matrix
[u(Tq − DT

q (k, 1 · · · d))] contains the decisions about all d
attributes of a sample xk. The final decision about the sample
xk being outlier is obtained by taking the dot product of this
matrix with 1d×1, subtracting d from the result and applying
unit step function on this value. A value of 0 indicates that xk
is an outlier, whereas a value 1 indicates that xk is a normal
sample.
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Fig. 2. 2(a) represents the case of a 2D non-rotated hyperellipsoid. m is
the mean, m1

k and m2
k are the projections of m on subspaces 1 and 2. (For

2D hyperellipsoid, there will be 2 subspaces of 1D each) The projection of
hyperellipsoid along subspace 1 is shown with a red line and that on subspace
2 with a green line. 2(a) represents the case of a 2D hyperellipsoid rotated
by an angle θ from the principal axis. The projection of hyperellipsoid along
subspace 1 is again shown with a red line and that on subspace 2 with a green
line.

As the steps 1,2 and 3 of this section are performed iff the
sample has been declared an outlier (using the procedure of
section II), therefore, the final decision of eq. (4) will be 0
and it does not play a role in ‘outlier detection’. However, it
has been computed because it will play an important role in
event detection and identification (explained in section III-B).

To summarize, following important information can be
derived from the decision function of eq (4):

• The matrix [Tq−DT
q (k, 1 · · · d)] gives information about

the degree of deviation of all d individual attributes of
sample xk.

• The matrix [u(Tq − DT
q (k, 1 · · · d))] gives information

about all d individual attributes of sample xk being outlier
or normal.

• The product [u(Tq − DT
q (k, 1 · · · d))]T 1d×1 gives the

number of normal attributes in sample xk.
• The negative of term [u(Tq −DT

q (k, 1 · · · d))]T 1d×1 − d
gives the number of outlying attributes in sample xk.

• The overall function u([u(Tq−DT
q (k, 1 · · · d))]T 1d×1−d)

gives information about xk being an outlier or normal. xk
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will be declared as an outlier, if any one of its projections
xpk is an outlier.

B. Computations at the gateway node of a Region

The outlier detection algorithm described in the previous
section will operate on each of the nodes of hierarchical WSN.
Thus, each qth node Sq,∀q = 1, 2, · · · , N will compute Dq

and Outlierq,k. In order to determine the presence of an
event in the region R, the gateway node Sg tends to collect
some information Iq,∀q = 1, 2, · · · , N from each node of
the network. The information Iq broadcasted by each node
consists of the following statistics:

Iq = {Dq(k, 1 · · · d), Outlierq,k, Tk}

where Dq(k, 1 · · · d) is the kth row of Dq which contains
information about all the d projections of xk being outlier or
normal, Outlierq,k is the information about xk being normal
or outlier and Tq,k is the time stamp at which the kth sample
was measured at node Sq. The leaf nodes S3, · · · , S6 will
broadcast their information to their parent nodes S1, S2. Each
parents node combines its own information with its children’s
node. Assuming a to be the number of children nodes the
combined information at a parent node in the network can be
written as:

I
′

q = {[DT
parent(k, 1 · · · d)|DT

1 (k, 1 · · · d)| · · · |DT
a (k, 1 · · · d)]}︸ ︷︷ ︸

D′
q⋃

{
[
Outlierparent,k Outlier1,k · · · Outliera,k

]T︸ ︷︷ ︸
Outlier′q

}

⋃
{
[
Tparent,k T1,k · · · Ta,k

]T }
where D

′

q is a matrix that contains Dq(k, 1 · · · d) of various
nodes and increases in size at all the parent nodes of the
network. For example, at the parent node S1 in fig. 1 D

′

q

will be a 3 × d matrix that will contain the Dq(k, 1 · · · d) of
itself and its children nodes S3 and S4. Similarly the matrix
Outlier

′

q will also be updated at all the parent nodes of the
network.

This broadcast and update of information I
′

q will continue
up the hierarchy to the gateway node Sg. The gateway node
of a particular region R will be able to make various decisions
based on the collected information, the most important of
which is to determine the presence or absence of an event
in the network. Following is a description of decisions that
the gateway node can make.

1) Event Detection: To detect the presence of an event in
the region R, we use the definition used in [2]: “An event is
said to be present in the network if more than half of the nodes
in the network show outliers”. The gateway node performs the
following operations to determine the presence or absence of
an event after an outlier is detected at any node in the region.

• The time stamp information Tq,k of all nodes in the region
R are compared with the current time instant and the
information of nodes with old time stamps is discarded.

• The matrix Outlier
′

q is extracted from the updated in-
formation after above step and the following operation is
performed to determine the presence or absence of event

EventR = u(dN
2
e − [Outlier

′

q

T
]1N×1)

where 1N×1 is a column vector of all 1’s and
[Outlier

′

q

T
]1N×1 determines the number of nodes out

of N in the region R that do not indicate the presence of
outliers. If this number is greater than dN2 e then it implies
that more than half of the nodes do not indicate an outlier
and EventR = 0. i.e, the region does not indicate the
presence of an event. However, [Outlier

′

q

T
]1N×1 < dN2 e

implies that more than half of the nodes indicate the
presence of an outlier, therefore, EventR = 1 and the
region has been affected by an event.

2) Event Identification: Once the gateway node has de-
clared the presence of event in the region, it can then use the
information I

′

q of the whole network to determine the type of
event that has occurred in the region. This would also lead to
the identification of attributes involved in the event.

• The gateway node extracts the matrix D
′

q from the
information I

′

q . D
′

q is matrix, each of whose columns
contain the information about the projections of most
recent data sample, at a particular node, being outlier or
normal.

• The attributes involved in the event are then identified by
performing the following operation.

AttributesR = Indices{sort{D
′

q

T
1N×1}}

The matrix AttributesR will return the attributes in the
order of their increasing contribution towards the event.

The overall algorithm starting from outlier detection to event
detection and identification is summarized in the flow chart of
fig. 3.

IV. COMPLEXITY COMPARISON WITH QS-SVM

We compare the performance and complexity of our pro-
posed clustering based event detection algorithm with five QS-
SVM based algorithms presented in [2], [3] and [6] because
they consider spatio-temporal and attribute correlations of data
for event detection, like the proposed algorithm. Whereas,
no other clustering based algorithm provides event detection
strategy.

The algorithm presented in [6] (ST-QS-SVM) tends to
separate the normal data from outliers using a quarter-sphere
shaped boundary around the chunk of normal data in such
a way that outliers remain outside the quarter-sphere. The
quarter-sphere radius is determined from spatio-temporal cor-
relations of nodes’ data. The lower limit to the number of false
detections in any QS-SVM algorithm is set by regularization
parameter (say uε(0, 1)). Events are detected by using a con-
sensus of all the nodes in the network. An event is said to occur
in the network if more than half of nodes indicate the presence
of an outlier. The algorithm presented in [2] (STA-QS-SVM)
tends to improve the outlier and event detection performance
of [6] by incorporating attribute correlations in addition to
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Each node forms a hyper-ellipsoid 
of most recent ‘k’ data samples

Determine if the 
most recent ‘kth’ 

sample is an outlier 
using procedure of 

section II

Update the hyper-ellipsoid 
parameters for the next new 

data sample

Determine the projections of hyper-
ellipsoid along each of the dimensions 

as in step 1 of section III-A

Perform hyper-ellipsoidal clustering on 
each of the projections as in step 2 of 

section III-A

Determine the ‘outlier’ metric using eq. 
4, as in step 3 of section III-A

All nodes broadcast their information to 
the gateway /sink node of the region in 
a hierarchical manner. The information 

consists of decision about all the 
projections of  most recent sample being 

an outlier or not.

The gateway node determines the 
presence or absence of event using the 

metric defined in section III-B

The gateway node determines the 
attributes involved in the event using 

the metric defined in section III-B

Yes

No

Fig. 3. Complete algorithm for outlier and event detection and event
identification in a region R.

spatio-temporal correlations of nodes data for determining the
quarter-sphere radius. This results in an increase in outlier
and event detection performance with an added disadvantage
of increase in computational complexity. Various algorithms
presented in [3] (STA-TSV, STA-TASV, STA-CA) have the
same underlying mechanism as that of STA-QS-SVM ([2]),
therefore, their performance is comparable to STA-QS-SVM.
However, these algorithms tend to reduce the communication
and computational complexity of STA-QS-SVM as discussed
in tab. I.

A detailed analysis of computational and communication
overheads of the proposed technique along with various QS-
SVM based algorithms proposed in [2], [3], [6] is given in
tab. I. The analysis clearly shows that the proposed clustering
based algorithm reduces the O(n2 + nd2) complexity of
various QS-SVM algorithms to O(nd2). Thus, the proposed
algorithm achieves event detection as well as identification

with a significant reduction in computation complexity as com-
pared to QS-SVM algorithms which perform event detection
only. The communication complexity of all the techniques are
approximately same however.

TABLE I
ANALYSIS OF COMPUTATION & COMMUNICATION COMPLEXITY FOR THE
PROPOSED TECHNIQUE AND QS-SVM BASED ALGORITHMS [2], [3], [6].
n IS THE TOTAL NUMBER OF MEASUREMENTS, d IS THE NUMBER OF

ATTRIBUTES, v << 1 IS THE FRACTION OF EVENTS IN THE DATA SET AND
uε(0, 1) IS THE REGULARIZATION PARAMETER FOR SVM. NOTE THAT

nv << n AND (nv)3 << n3 .

Proposed Technique Computational Complexity
Outlier Detection [10] O(nd2)
Projection along d dimensions O(nv)
Eigenvalue decomposition O((nv)3)
Clustering along d dimensions O(nv)
Decision for outlier and event O(1)
Total computational complexity O(nd2 + 2vn+ (nv)3)
of proposed technique ≈ O(nd2)

QS-SVM Techniques Computational Complexity
ST-QS-SVM [6] O(n2)
STA-QS-SVM [2] O(n2 + nd2)
STA-TASV,STA-TSV [3] O(n2 + nd2)
STA-CA [3] O(n2 + nud2)

Proposed Technique Communication Complexity
Maximum communication overhead O(an)
for parent node close to ≈ O(n)
gateway node
QS-SVM Techniques Communication Complexity
ST-QS-SVM [6] O(n)
STA-QS-SVM [2] O(n)
STA-TASV, STA-TSV,STA-CA [3] O(nu)

V. SIMULATIONS & RESULTS

TABLE II
A COMPARISON OF EVENT DETECTION & IDENTIFICATION RATE AND

FALSE POSITIVE RATE OF THE PROPOSED TECHNIQUE WITH ST-QS-SVM
[6], STA-QS-SVM [2], STA-TASV, STA-TSV, & STA-CA [3]

Technique Detection Rate False Positive Rate
(Synthetic Data) (Synthetic Data)

Proposed (Detection 98.52% 0.34%
+ identification)
ST-QS-SVM [6] 46.67% 0.3%
STA-QS-SVM [2] 99.2% 0.26%
STA-TASV [3] 99% 0.26%
STA-TSV [3] 98.8% 0.3%
STA-CA [3] 99% 0.3%
Technique Detection Rate False Positive Rate

(Real Data) (Real Data)
Proposed (Detection 90% 0.1%
+ identification)
ST-QS-SVM [6] 16.67% 10.85%
STA-QS-SVM [2] 91.67% 0.5%
STA-TASV [3] 92.45% 0.48%
STA-TSV [3] 99% 0.6%
STA-CA [3] 91.67% 0.1%

Experimental evaluation was performed on matlab with two
types of data sets, 1) synthetic and 2) real.

The synthetic data set consisted of 2500 samples belong-
ing to a 5-dimensional Gaussian distribution with attribute
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means selected from (10-60). The simulation environment for
synthetic data set assumed a gateway node with 6 spatially
correlated child nodes (N = 7) in the hierarchy. Both the
synthetic and real data sets were normalized between [0,1].

Performance evaluation was done with 5% of events intro-
duced in the tails of data set distributions along each of the
attributes. For the proposed technique, the effective radius of
hyperellipsoid t was set to t2 = (χd

2)−1
0.98. For comparison

with QS-SVM, the training window n for all the QS-SVM
based techniques (ST-QS-SVM, STA-QS-SVM, STA-TASV,
STA-TSV & STA-CA) was kept equal to 100 & RBF Kernel
function was used with window width 0.2. As our proposed
technique performs joint event detection & identification, so
event detection & identification rates and false positive rates
have been presented for the proposed technique. Whereas,
for the QS-SVM based techniques, only event detection and
false positive rates have been presented. Tab. II shows that
our proposed technique can achieve approximately the same
event detection & false positive rates as those of STA-QS-
SVM, STA-TASV, STA-TSV & STA-CA with an additional
advantage of event identification and significant reduction in
computational complexity (from O(n2) to O(nd2) tab. I).
Further, the proposed technique suggests a 111% improvement
in the detection rate as compared to ST-QS-SVM.

The real data set was taken from a multi-hop (N = 4) WSN
deployment using TelosB motes. The data consists of humidity
and temperature measurements collected during 6 hour period
at intervals of 5 seconds [14]. This data set has approximately
1% of events (recorded as high temperature). Tab. II shows
that our proposed technique can achieve approximately the
same event detection & false positive rates as those of STA-
QS-SVM, STA-TASV & STA-CA with the advantage of
event identification and significant reduction in computational
complexity. The proposed technique also achieves a 439%
improvement in the detection rate as compared to ST-QS-
SVM. The detection rates for STA-TSV, however, are greater
than the proposed technique.

The results for synthetic and real data sets clearly state that
the performance of the proposed technique is equivalent to QS-
SVM based techniques, i.e, STA-QS-SVM [2], STA-TASV,
STA-TSV and STA-CA [3]. This comparable performance can
be explained in terms of temporal-attribute correlations which
are taken into account by STA-QS-SVM, STA-TASV, STA-
TSV, STA-CA as well as the proposed technique. Temporal
correlations are taken into account by using the forgetting
factor technique for outlier detection and updating the cluster
parameters using the most recent data samples (section II). At-
tribute correlations are taken into account by the consideration
of inverse covariance matrix in the calculation of mahalanobis
distance (eq. (1)). ST-QS-SVM has a much lower detection
rate as compared to other techniques, as it does not incorporate
attribute correlations of data.

VI. CONCLUSION

This paper introduces the problem of clustering based
event detection and identification in WSNs that has been
studied for the first time. Further, it presents a novel, online

and computationally efficient clustering based strategy for joint
event detection & identification that incorporates temporal-
attribute correlations, specific to optimal event detection tech-
niques. The proposed technique achieves a high detection rate
(close to 99%), a very low false positive rate (close to 0.3%)
and a significant reduction in computational complexity (from
O(n2) to O(nd2)) as compared to the state-of-the-art QS-
SVM based techniques for synthetic and real data sets. A
remarkable achievement of the proposed technique is its event
identification, i.e, it identifies the key attributes involved in
an event in the order of their increasing contribution towards
the event; A problem that has been dealt for the very first time
and provides an open challenge to the research community to
build and improve on the proposed algorithm.
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